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This deliverable evaluates innovative interference handling methods and provides first simulation 
results to show their practical interest. One of the main focus consists in the development of 
interference management methods being adapted to the practical constraints encountered in 
realistic networks and exploiting in the most efficient manner the resources available. Hence, 
transmissions schemes achieving good performances at the cost of only limited Channel State 
Information (CSI) at the transmitters are proposed. A channel modelling approach is also 

proposed to serve as a building block to provide the interference management schemes with 
more accurate knowledge of the channel state. Finally, a novel abstraction framework is 
presented to optimize the limited CSI feedback in presence of turbo Linear CodeWord Interference 
Cancellation (turbo L-CWIC) receiver architecture.  



TABLE OF CONTENTS 

 

1 EXECUTIVE SUMMARY ....................................................................................................... 6 

2 INTRODUCTION ................................................................................................................ 8 

3 INTERFERENCE MANAGEMENT WITH IMPERFECT CHANNEL FEEDBACK ........................... 10 

3.1 INTERFERENCE ALIGNMENT WITH INCOMPLETE CSIT ............................................................... 10 
3.1.1 Introduction .............................................................................................. 10 
3.1.2 System Model ............................................................................................ 10 
3.1.3 Interference Alignment with Incomplete CSIT for Tightly-Feasible Channels ...... 12 
3.1.4 Interference Alignment with Incomplete CSIT for Super-Feasible Channels ........ 13 
3.1.5 Simulation Results...................................................................................... 14 
3.1.6 Conclusion ................................................................................................ 15 

3.2 INTERFERENCE MANAGEMENT WITH TOPOLOGICAL CSIT ........................................................... 17 
3.2.1 Introduction .............................................................................................. 17 
3.2.2 Problem Description ................................................................................... 17 
3.2.3 A Graph Theoretic Perspective ..................................................................... 18 
3.2.4 An Interference Alignment Perspective .......................................................... 20 
3.2.5 Conclusion ................................................................................................ 22 

4 INTERFERENCE MANAGEMENT WITH REALISTIC CHANNEL MODELLING ......................... 23 

4.1 REALISTIC CHANNEL MODELLING AND NETWORK SIMULATION .................................................... 23 
4.2 JOINT LOCATION AND INTERFERENCE PREDICTION FOR ICIC ...................................................... 25 

4.2.1 Statistical interference estimation state of the art – Stochastic approach........... 27 
4.2.2 Considered assumptions and scenario ........................................................... 28 
4.2.3 Location-dependent inter-cell interference estimation ..................................... 30 
4.2.4 Location-dependent ICI mapping performance evaluation ............................... 32 
4.2.5 Conclusion and future work ......................................................................... 34 

5 CALIBRATION FRAMEWORK FOR PHYSICAL LAYER ABSTRACTION OF (TURBO) 
CODEWORD IC RECEIVERS .............................................................................................. 36 

5.1 INTRODUCTION .......................................................................................................... 36 
5.2 SYSTEM MODEL .......................................................................................................... 36 
5.3 LAPPR-BASED TURBO L-CWIC ...................................................................................... 37 

5.3.1 Turbo L-CWIC architecture .......................................................................... 37 
5.3.2 PHY abstraction ......................................................................................... 37 

5.4 PHY ABSTRACTION CALIBRATION...................................................................................... 38 
5.4.1 Calibration methods ................................................................................... 38 

5.5 SIMULATION RESULTS .................................................................................................. 40 

6 CONCLUSIONS................................................................................................................. 43 

 

  



Celtic-Plus SHARING          Document D3.4 

 

Public distribution  3 (46) 

LIST OF FIGURES 

Figure 1: Average rate per user in terms of the normalized TX power for the tightly-feasible IC 14 
Figure 2: CSIT allocation size for K = 3 users. 15 
Figure 3: A topology of the 6-cell network. 20 
Figure 4: Illustration for a regular cellular network. 22 
Figure 5: Macro-cell layer deployment in a real dense urban environment. 23 
Figure 6: Cell selection (left) and received power from selected cell (right). 24 
Figure 7: Interference map. 25 
Figure 8: Space/time interference prediction. 26 
Figure 9:  Cumulative distribution function of inter-cell interference level in regular and random network. 27 
Figure 10:  Two-tier heterogeneous network realization 29 
Figure 11:  Observation zone containing the more interfering BSs. 30 
Figure 12: Co-tier Interference map in Macro cell scenario. 33 
Figure 13: Co-tier analytical and simulated maps. 34 
Figure 14: Relative co-tier interference error  34 
Figure 15: STBICM transmission scheme within a FLA framework. 36 
Figure 16: PHY abstraction for turbo L-CWIC at iteration i. 38 
Figure 17: Batch of curves stocked in the Trace files in order to perform the calibration for MCS 6 and MCS12. 41 
Figure 18: The convergence of the 3D MSE calibration solution for MCS 𝟔 and MCS 𝟏𝟐. 42 
Figure 19: Comparison of the predicted and simulated PER for MCS 6 and MCS 12. 42 
 
 

 

 

 

 

LIST OF TABLES 

Table 1: Link scheduling 19 
Table 2: 𝟖-block fading channel - 1D/3D calibration factors 40 
Table 3: 𝟏-block fading channel - MSE 40 
Table 4: 1-block fading MSE w.r.t. the calibration coefficients optimized for 8-block fading channel 42 
  



ACRONYM DEFINITION 

3GPP Third Generation Partnership Project 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 

BPP Binomial Point Process 

BS Base Station 

CDF Cumulative Distribution Function 

CoMP Coordinated Multi-Point 

CSI Channel State Information 

CSIT Channel State Information at Transmitter 

DL Downlink 

DoF Degree of Freedom 

eNB evolved Node B 

FDD Frequency Division Duplex 

FLA Fast Link Adaptation 

HetNET HETerogeneous NETwork 

IA Interference Alignment 

IC Interference Channel 

ICI Inter-Cell Interference 

ICIC Inter-Cell Interference Coordination 

IER Interference Estimation Reliability 

ISD Inter-Site Distance 

JP Joint Processing 

LMMSE Linear Minimum Mean Square Error 

LTE-A Long Term Evolution - Advanced 

MAC Media Access Control 

MCSs Modulation and Coding Schemes 

MIMO Multiple Input Multiple Output 

ML Maximum Likelihood 

MSE Mean Square Error 

NLOS Non Line-Of-Sight 

OFDMA Orthogonal Frequency Division Multiplexing Access 

PDF Probability Distribution Function 

PER Packet Error Rate 

PHY PHYsical Layer 

PPP Poisson Point Process 



Celtic-Plus SHARING          Document D3.4 

 

Public distribution  5 (46) 

QoS Quality of Service 

RE Resource Element 

RX Receiver 

RRM Radio Resource Management 

SINR Signal to Interference plus Noise Ratio 

SNR Signal to Noise Ratio 

TIM Topological Interference Management 

TTI Transmission Time Interval 

TX Transmitter 

UE User Equipment 

ZF Zero Forcing 



1 EXECUTIVE SUMMARY 

Interference represents a bottleneck in the spectrum efficiency of modern dense wireless networks. This 

document presents several innovative concepts and algorithmic solutions which aim at helping the receiver 

getting rid of unwanted interference, via an intelligent design at the transmitter side. 

 

Section 3 discusses the need for efficient interference management schemes in order to achieve the 

desired Quality-Of-Service (QoS) of future wireless networks. It is shown that an ideal interference 

management can only be done if the network has sufficient resources in terms of feedback, backhaul links, 

signal processing capabilities, etc. This leads to the fact that novel innovative methods are needed so as 

to adapt to the practically encountered scenarios in which insufficient resources are available. Achieving 

most of the gains of interference management in practical settings with only limited resources is very 

challenging and is the main focus of this deliverable. Section 3 challenges the usual assumption of full 

channel state information at the transmitters. Hence, the benefits of some interference management 

techniques such as interference avoidance and interference alignment are investigated under partial 

availability of channel knowledge at transmitters. In particular, it is shown that interference alignment 

does not always require full knowledge of the multi-user channel. Another interesting scenario occurs 

when transmitters only have access to the topological information. It is then shown how this information 

can significantly improve the performance in comparison to the situation without any channel information. 

More details can be found on the journal publications which have resulted from these work [KG14, YG14].  

 

Section 4 presents novel methods to obtain accurate models predicting the level of interference 

experienced by the users. First, a ray tracing approach is developed based on results from the realistic 

simulation framework introduced in [D3.1]. It is then shown how realistic interference maps can be 

obtained in a dense urban environment from a ray-based propagation model. Further processing of these 

interference maps allows to assess network performance and to generate inputs that can be used for radio 

resource management algorithms. An alternative probabilistic approach is then described. A new analytical 

model based on stochastic geometry, which predicts the Inter-cell Interference (ICI) level suffered by 

User Equipment's (UEs) in Downlink (DL) in Heterogeneous Networks (HetNets) according to their location. 

The HetNet is modelled using stochastic geometry. More specifically, the proposed model relies on the 

Poisson Point Process (PPP) formalism (and its large arsenal of tools) to derive closed forms for location-

dependent ICI under realistic propagation channel assumptions, including both fast fading and shadowing. 

Same and separate frequency band allocations are investigated for macro and small cells, leading to co-

channel and co-tier interference respectively. Analytical models are derived regarding interference median 

value. These predictions are used to build 2D interference maps (i.e. with estimated ICI level at each pixel 

of the area of interest), which could be subsequently beneficial to location-based Radio Resource 

Management (RRM) or ICI coordination/cancellation algorithms in real systems. We provide illustrations 

in Long Term Evolution-Advanced (LTE-A) standard-compliant scenarios, while discussing the ”spatial 

reliability” of this model.  

 

Section 5 presents and discusses a novel calibration framework for physical layer abstraction of (turbo) 

Codeword IC receivers. Modern wireless communication systems rely on limited feedback for Fast Link 

Adaptation (FLA). FLA in presence of advanced receivers needs new Physical layer abstractions (PHY 

abstractions) that are able to capture their performance in order to derive the limited feedback metrics 

(e.g., channel quality indicators). Recently, a PHY abstraction was proposed for the class of iterative linear 

minimum mean square error based soft interference cancellation and decoding also referred to as turbo 

Linear Codeword Interference Cancellation (turbo L-CWIC) receivers in Third Generation Partnership 

Project (3GPP) [3GPP12]. This PHY abstraction needs to be calibrated and a first one-dimensional (1D) 

calibration method was proposed. In this study, we revisit the calibration method by proposing a more 

rigorous framework to minimize the predicted throughput error that dramatically  
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bias the FLA mechanisms. We also suggest a novel multi-dimensional calibration approach. Monte Carlo 

simulations show that it outperforms the 1D calibration at the expense of the knowledge of the number 

of independent fading blocks experienced by a codeword. 

 

Finally, the main conclusions of this deliverable are presented and considered in the broader perspective 

of the project. The undergoing works are outlined and the next steps are presented. 



2 INTRODUCTION 

In order to deal with the fast increasing demand for new wireless (multimedia) services, new wireless 

systems are designed based on greater densification of infrastructure equipments (small cells), and a very 

aggressive spatial frequency reuse. Spatial reuse of resources in turn results in severe interference 

conditions especially for cell-edge terminals [GHH10]. 

The role played by interference control methods in this context is critical so as to provide the users with 

the required quality of service.  Interference control methods can be categorized according to where 

intelligent algorithms are mostly located.  In interference avoidance methods, intelligence is located mainly 

at the transmitter side, where the transmitter applies a suitable precoding–based processing before 

transmitting the data. In the case that multiple (interfering) transmitters jointly optimize their precoding 

functions, one talks about transmitter cooperation for interference control. At the receiver side, intelligent 

interference-aware processing can be implemented through the use of interference rejection and/or 

interference decoding algorithms. Such methods exploit the learned characteristics of the interference 

signal (for instance the spatial signature, or the codebooks exploited for modulation and coding) to 

suppress it. 

The gain created by multiple antenna combining in mitigating interference by means of ZF (or related 

criteria) beamforming is well established. The use of multiple antennas allows for extra degrees of liberty 

for transmitting data while creating nulls in channel directions that correspond to unintended receivers. 

In the case of transmitter cooperation, devices can jointly design beamforming solutions that, although 

unable to null out interference at all interfered locations, can align the channel directions followed by 

distinct interfering sources, making it easier to reject them by a receiving device equipped with just a 

small number of antennas. 

The practical application of above transmitter- or receiver-based interference control mechanisms hinges 

on the availability of accurate knowledge of CSI. In reality however, most cellular networks are deployed 

in the Frequency Division Duplex (FDD) mode which requires a dedicated feedback link so as to convey 

CSI back to the transmitter. 

A crucial question then becomes how much interference control capability remains when having to deal 

with finite CSI accuracy brought by limited feedback. There are several models which have been 

considered in the literature for limited feedback in the single transmitter case; such as noisy analog, 

quantized, and delayed feedback. In the case of interference avoidance through transmitter cooperation, 

an additional model for limited CSI at the transmitter side is referred to as incomplete CSI, which indicates 

that only a part of the global multi-user channel matrix is known at one particular transmitter. 

 Coordinated Multi-Point (CoMP) with Incomplete  CSI 

The notion of incomplete CSI is particularly useful in the context of deployment scenarios where it is 

possible to feedback accurate CSI from terminals to transmitting base station but it is not possible to fully 

exchange this information across the Base Stations (BS). This may be the case for a latency-prone or rate 

limited backhaul. Coordinated Multi-Point (CoMP) schemes that can operate with limited CSI are able to 

mitigate the interference exploiting the channel feedback from only a subset of the users. Such schemes 

are hereby studied in the context of interference alignment. 

 Interference Control with Topological and Location Dependent Interference 

For scenarios where a high level of mobility is expected from the users, it may not be even practical to 

rely on instantaneous channel feedback for interference avoidance. A conservative approach then consists 

in exploiting long term channel gain information. Such information indicates “who interferes with who, 

strongly or weakly, on average” and is already enough to design interference avoidance schemes as 

indicated in one of the contributions under this document. More generally it is desirable to gain a better 

understanding on the macroscopic properties of interference, for instance how the interference power is 

distributed across the cell as a function of the user location. Such information can among others be 
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exploited in view of interference power prediction, so as to facilitate resource allocation and/or anticipate 

handoff functions. 

 Physical LayerPerformance Modelling and Abstractionin the Presence of Interference 

One of the objectives of this document is also related to the design of advanced receiver for handling 

interference. Advanced receivers are particularly useful when transmitter-based avoidance is imperfect or 

not possible (for instance in the uplink with single antenna user terminals). For a careful integration of 

the PHY performance into the link adaptation algorithms, it is important that the interference control 

capability of the receiver be accounted for in the link adaptation tables. This requires a step of modelling 

(abstraction) of the PHY performance (e.g., Bit Error Rate (BER)) for various interference and Signal to 

Noise Ratio (SNR) scenarios. This modelling constitutes the final objective of this document.    



3 INTERFERENCE MANAGEMENT WITH IMPERFECT CHANNEL FEEDBACK 

3.1 Interference Alignment with Incomplete CSIT 

3.1.1 Introduction 

Although multi-transmitter coordinated transmission such as Interference Alignment (IA) constitutes 

a promising tool to combat interference, coordination benefits go at the expense of acquiring accurate 

enough CSI at the Transmitters (TXs) and sharing it across all TXs whether explicitly or implicitly. In the 

case of multi-antenna based IA without channel extension, some form of CSI at the TXs (CSIT) is required 

to compute the precoder at each one of the TXs and can result in a significant overhead in practice. The 

IA literature for static Multiple Input Multiple Output (MIMO) channels is rich in methods improving the 

efficiency of the precoding schemes at finite SNR and reducing the complexity of the algorithms. Yet, the 

obtaining of the CSIT at the TXs represents a major obstacle to its practical use and the study of how 

CSIT requirements can somehow be alleviated has become an active research topic in its own right. 

Yet, in all the existing works on IA feasibility, it is assumed that every TX knows perfectly the full 

multi-user channel, which we define as the channel from all the TXs to all the Receivers (RXs). This 

assumption is critical as the maximal Degrees-of-Freedom (DoF) is known to be significantly lower in the 

absence of CSIT. However, a simple examination of IA achievability in particular cases of Interference 

Channels (IC) reveals that how much CSIT is required at any one TX actually depends on the antenna 

configuration. Obvious examples include TXs with single antenna which has no alignment capability, hence 

requires no CSIT, or an IC with many-antenna RXs which eliminate the need for any alignment, hence 

CSIT. In the general case with heterogeneous antenna distributions, an interesting question is whether 

an alignment scheme can get away with less than full CSIT. To this end, one needs to revisit the IA 

feasibility question under the prism of CSIT. We focus in this task on a completely different problem which 

is the incomplete CSIT sharing, which means that each TX receives its own CSIT. In particular, we will 

exploit the fact that some channel coefficients are only known at a subset of TXs. We will show that in this 

case, perfect alignment is still possible despite the lack of full CSIT. More remarkably, we show that as 

the number of antennas on the devices (Base Station (BS) and User Equipment (UE)) is increasing, the 

need for CSIT goes down instead of up as was conventionally thought.  

      In what follows, we formulate this problem and present the major results. The detailed proof and 

more results can be found in our journal paper [KG14]. 

3.1.2 System Model 

We study the transmission in a K-user MIMO IC where all the RXs and the TXs are linked by a wireless 

channel. We consider a conventional channel model with the particularity of our model lying in the 

structure of the CSIT. We consider that each TX has its own CSIT in the form of a sub-matrix of the multi-

user channel matrix. This specific information structure is referred to as incomplete CSIT, which will be 

detailed later. TX-j is equipped with 𝑀𝑗 antennas, RX 𝑖 has 𝑁𝑖antennas, and TX-j transmits a single stream 

to RX𝑗. This IC is then denoted as ∏ (𝑁𝑘 ,𝑀𝑘)
𝐾
𝑘=1 . We consider exclusively single-stream transmissions and 

the extension to multiple streams will be discussed later in this work. When all the TXs and all the RXs 

have the same (resp. different) number of antennas, i.e., [(𝑁,𝑀)]𝐾, we say that the antenna configuration 

ishomogeneous (resp. heterogeneous). 

The channel from TX 𝑗 to RX𝑖 is represented by the channel matrix 𝐇𝐢,𝐣  ∈ ℂ
𝑁𝑖×𝑀𝑗with its elements i.i.d. 

according to a continuous probability distribution to ensure that all the channel matrices are almost surely 

full rank. The global multi-user channel matrix is denoted by  𝐇 ∈ ℂ𝑁𝑡𝑜𝑡×𝑀𝑡𝑜𝑡  where 𝑁𝑡𝑜𝑡 ≜ ∑ 𝑁𝑘  
𝐾
𝑘=1 and 𝑀𝑡𝑜𝑡 ≜

∑ 𝑀𝑘
𝐾
𝑘=1 : 

𝐇 ≜ [

𝐇𝟏,𝟏 ⋯ 𝐇𝟏,𝐊
⋮ ⋱ ⋮

𝐇𝐊,𝟏 ⋯ 𝐇𝐊,𝐊

]      (3.1) 
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TX𝑖 uses the unit-norm TX beamformer 𝐭𝑖 ∈ ℂ
𝑀𝑖×1 multiplied by√𝑃, where 𝑃 is the transmit power per-TX, 

to transmit the data symbol 𝑠𝑖 (i.i.d.𝒩ℂ(0,1)) to RX𝑖. The received signal 𝐲𝑖 ∈ ℂ
𝑁𝑖×1 at the 𝑖th RX reads then 

as 

𝐲𝒊 = 𝑷𝐇𝐢,𝐢𝐭𝒊 + 𝑷∑ 𝐇𝐢,𝐣𝐭𝐣
𝐊
𝐣=𝟏,𝐣≠𝐢 +𝛈𝐢     (3.2) 

where 𝜂𝑖 ∈ ℂ
𝑁𝑖×1 is the normalized noise at RX-i and is i.i.d. 𝒩ℂ(0,1). The received signal 𝒚𝑖 is then processed 

by a RX filter 𝐠𝒊
𝐇 ∈ ℂ1×𝑁𝑖 to obtain an estimate of the data symbol𝑠𝑖. 

Our analysis deals with the achievability of IA, which means that the desired signal should be decoded 

free of interference at each RX. Equivalently, the RX beamformer 𝐠𝒊
𝐇 should be able to ZF all the received 

interference which means fulfilling for all the interferers𝑗 ≠ 𝑖 

𝐠𝐢
𝐇𝐇𝐢,𝐣𝐭𝐣 = 𝟎.      (3.3) 

Thus, IA is feasible if the above constraint can be achieved at all the RXs for all the interfering streams. 

Note that this is equivalent to having the interference subspace at RX𝑖 span at most 𝑁𝑖 − 1  dimensions. 

 Incomplete CSIT Model 

The feasibility results from the literature have always made use of an implicit full CSIT assumption. 

Surprisingly, the problem of revisiting the IA feasibility conditions under the light of a partial CSIT sharing 

framework has not been addressed before. To fill this gap, it is necessary to introduce a new model to 

take into account the partial CSIT sharing capability of the TXs. 

Hence, we consider that a TX has either perfect knowledge of a channel coefficient or no information 

at all on that element. We represent the CSIT structure at TX-j by the CSIT matrix 𝐀(𝒋) ∈ {0,1}𝑁𝑡𝑜𝑡×𝑀𝑡𝑜𝑡 such 

that {𝐀(𝒋)}𝒊,𝒌 = 1  if {𝐇}𝒊,𝒌 is known at TX𝑗, and 0 otherwise. Denoting by 𝐇(𝒋) the available CSI at TX 𝑗, we 

obtain 

𝐇(𝒋) = 𝐀(𝒋)⊙𝐇      (3.4) 

We define the CSIT allocation 𝓐 as the set of CSI representations available at all TXs: 

 𝒜 ≜ {𝐀(𝒋)|𝐀(𝒋) ∈ {0,1}Ntot×Mtot , j ∈ 𝒦 }     (3.5) 

and we define the space 𝔸 containing all the possible CSIT allocations. We can then define the size of an 

incomplete CSIT allocation as follows. 

Definition (Size of a CSIT Allocation): The size of a CSIT allocation 𝓐, denoted by 𝑠(𝓐), is equal to the 

overall number of complex channel coefficients fed back to the TXs. Thus, 

s(𝒜) ≜ ∑ ‖𝐀(j)‖
F

2K
j=1 .     (3.6) 

To check whether the IA feasibility is preserved with a given CSIT allocation, we introduce the function 

𝑓feas which takes as argument a CSIT allocation 𝐀(𝒋) and an antenna configuration ∏ (𝑁𝑘 ,𝑀𝑘)
𝐾
𝑘=1  and returns 

1 if IA is feasible with these parameters and 0 otherwise. Note that this means that there exists one 

algorithm achieving IA with this CSIT allocation but it does not precise the algorithm. We also define the 

set 𝔸feas containing all the CSIT allocations for which IA is feasible. Hence, 

𝔸feas ≜ {𝒜|ffeas(𝒜,∏ (Nk,Mk)
K
k=1 )}.     (3.7) 

Note that only the interfering channel matrices 𝐇i,j with𝑗 ≠ 𝑖are required to fulfill the IA constraints, and 

not the direct channel matrices 𝐇j,j. Thus, from a Degree of Freedom (DoF) point of view, we can always 

skip the direct channel matrices 𝐇𝐣,𝐣 in the feedback, which leads to the following definition. 

Definition (Complete CSIT Allocation): A complete CSIT allocation, denoted by 𝒜comp, is defined by the 

knowledge of all the interfering channel matrices 𝐇𝐢,𝐣 with 𝑗 ≠ 𝑖 at all TXs. Thus, the size of a complete CSIT 

allocation is 

𝒔(𝒜comp) ≜ 𝐾(NtotMtot − ∑ NiMi
K
i=1 ).     (3.8) 



A CSIT allocation with a size smaller than 𝑠(𝒜comp) is said to be strictly incomplete. 

At this stage, a natural question is to ask what is the most incomplete CSIT allocation which 

preserves the feasibility of IA, i.e., to find 

𝒜min = argmin
𝒜∈𝔸feas

s(𝒜).      (3.9) 

Note that we limit here our study to the IA feasible settings, i.e., such that 𝒜comp ∈ 𝔸feas. 

 Tightly-feasible and super-feasible settings 

Whether the total number of variables is strictly larger than the number of equations will be shown to 

impact significantly the CSIT needed. Hence, we introduce the following definitions. 

Definition (Tightly-feasible IC): An IC setting is called tightly-feasible if this IC is feasible and removing 

a single antenna at any TX or RX renders IA unfeasible. Equivalently, an IC is tightly-feasible if and only 

if it is  

∑ Ni
K
i=1 +Mi = K(K + 1).     (3.10) 

Definition (Super-feasible IC): A feasible setting which does not satisfy the tightly-feasible condition is 

said to be super-feasible. Equivalently, a super-feasible setting is a feasible setting such that 

∑ Ni
K
i=1 +Mi > 𝐾(K + 1).     (3.11) 

3.1.3 Interference Alignment with Incomplete CSIT for Tightly-Feasible Channels 

Theorem (Incomplete CSIT Allocation for Tightly-feasible ICs): In a tightly-feasible ∏ (𝑁𝑘 ,𝑀𝑘)
𝐾
𝑘=1 IC, if a 

tightly-feasible sub-IC formed by the set of TXs 𝑆TX and the set of RXs 𝑆RX exists, i.e., 

𝒩var(SRX, STX) = 𝒩eq(SRX, STX).     (3.12) 

then the incomplete CSIT allocation 𝓐 ≜ {𝐀(𝒋)|𝑗 ∈ 𝒦 } preserves IA feasibility, i.e., 𝒜feas ∈ 𝔸feas if 

𝐀(𝐣) = 𝐀𝐒𝐑𝐗,𝐒𝐓𝐗, ∀j ∈ STX      (3.13) 

𝐀(𝐣) = 𝐀𝓚,𝓚, ∀j ∉ STX      (3.14) 

This theorem implies that if a tightly-feasible sub-IC strictly included in the considered IC exists, then a 

strictly incomplete CSIT allocation preserving IA feasibility also exists. 

 

Example: Let us consider as toy-example the [(2,2), (2,2), (2,2), (4,4)] IC. We can easily observe that the 

first 3 TX/RX pairs form the well-known tightly-feasible [(2,2)3] IC. Hence, if the 3 first TXs align 

interference inside this sub-IC, RX4 has then enough antennas to remove all its received interference. In 

addition, TX4 can use its 4 antennas to eliminate the interference that it emits to the signal subspaces at 

the first 3 RXs. 

 

In fact, it can be easily seen that the obtained incomplete CSIT allocation exploits the heterogeneity of 

the antenna configuration. Indeed, there can be a tightly-feasible sub-IC strictly included in a tightly-

feasible IC only if the antenna configuration is heterogeneous. 

 

Corollary: In the homogeneous tightly-feasible [(N,M)K]  IC (this implies M+ N = K + 1) with M ≠ 1 and 

M ≠ K, there exists no generalized tightly-feasible sub-IC strictly included in the IC. Hence, the previous 

sufficient condition leads to no CSIT reduction. 
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This property only holds for tightly-feasible settings and we will show in the following section that CSIT 

reductions can be achieved for super-feasible ICs in any antenna configuration. It is then not the antenna 

heterogeneity, which is exploited, but the additional antennas. 

 An Example 

Let us consider the IC formed by the antenna configuration [(2,3), (2,4), (3,5), (3,2), (4,2)]. The CSIT allocation 

algorithm presented in our paper [KG14] returns 

𝓐 = {𝐀(𝟏) = 𝐀{1,2,3},{4,5,1}, 𝐀
(𝟐) = 𝐀{1,2,3,4},{1,2,4,5}, 𝐀

(𝟑) = 𝐀𝓚,𝓚, 𝐀
(𝟒) = 𝐀{1,2},{4,5}, 𝐀

(𝟓) = 𝐀{1,2},{4,5}} (3.15) 

We remind the reader that the notation A(4) = A{1,2},{4,5} means that TX4 receives the CSI relative to the 

sub-IC formed by the TXs in the set {4,5} and the RXs in the set {1,2}. 

Hence, TX4 and TX5 have only the CSI sufficient to align their interference at RX1 and RX2, which is in 

fact the first step of the IA algorithm. Once this is done, TX1 designs its beamformer to align its 

interference on the interference subspace created by TX4 and TX5 at RX2 and RX3. Note that it has a 

sufficient CSI to do so. Proceeding further, TX2 aligns its interference on the interference subspace 

spanned at RX1, RX3, and RX4 by the previous TX beamformers. At this step, all the interference subspaces 

have been generated and TX3 uses its 5 antennas to align its interference at all the RXs. 

The general idea is very simple and reads as follows: The TX beamformers in the smallest tightly-feasible 

ICs are computed first until all the TX beamformers are computed. Note that the size of the incomplete 

CSIT allocation obtained in the previous example is equal to 346 while the complete CSIT allocation has a 

size of 905. 

 

3.1.4 Interference Alignment with Incomplete CSIT for Super-Feasible Channels 

The previous section indicates how CSIT savings can be obtained for tightly-feasible scenarios. When 

additional antennas are available, the intuition goes that further CSIT savings should be possible at no 

cost in terms of IA feasibility. We now investigate this question. 

A distinct feature of super-feasible settings is that there must exist a corresponding tightly-feasible setting 

that can be obtained by keeping all TXs and RXs and simply ignoring certain antennas among the overall 

antenna set. Clearly, there are generally multiple ways for arriving at a tightly-feasible setting from a 

super-feasible one. Depending on the choice of which antennas are ignored in the initial super-feasible 

setting, the obtained tightly-feasible settings will satisfy particular CSIT requirements. Below, we show 

how trying to obtain the tightly feasible setting with smaller CSIT allocation in fact leads to the smaller 

CSIT allocation for the initial super-feasible setting as well. 

As a consequence, we consider the following optimization problem: 

𝒜 = argmin
𝒜

min
∏ (𝑁′𝑘,𝑀

′
𝑘)

𝐾
𝑘=1

𝑠(𝒜) (3. 16) 

      s. t.𝑓feas(𝒜,∏ (𝑁′𝑘 , 𝑀
′
𝑘)

𝐾
𝑘=1 ) = 1 

      s. t.   ∑ 𝑁′𝑖
𝐾
𝑖=1 +𝑀′𝑖 = 𝐾(𝐾 + 1) 

      s. t.  1 ≤ 𝑁′𝑖 ≤ 𝑁𝑖 

      s. t.  1 ≤ 𝑀′𝑖 ≤ 𝑀𝑖 

The problem of finding the minimal CSIT allocation has been reduced to finding the tightly-feasible setting 

(containing all the users) included in the full super-feasible setting, which requires the smallest CSIT 

allocation. Since a CSIT allocation algorithm has been derived for tightly-feasible settings, it remains only 

to determine which RXs or TXs should not fully exploit their antennas to ZF interference dimensions, i.e., 

where some antennas should be “removed” in terms of IA feasibility. 



Practically, the antennas are not removed but some precoding dimensions are used for another purpose 

than aligning interference inside the IC (e.g., reducing interference to other RXs, increasing signal power, 

diversity, etc...). As an example, we will now show how it can be used to increase the received signal 

power. Intuitively, we select the precoding subspace of dimension n with n < Mi which provides the largest 

received power to the RX. As a consequence, the quality of the direct channel is improved.  

The considered optimization problem is combinatorial in the total number of TXs and RXs which makes 

exhaustive search only practical for small settings. As a consequence, we provide in the following a CSIT 

allocation policy exploiting heuristically the additional antennas available to reduce the size of the CSIT 

allocation. The heuristic behind the algorithm comes from the insight gained in the analysis of tightly-

feasible settings that the more heterogeneous the antenna configuration is, the smaller the size of the 

CSIT allocation becomes. Intuitively, our algorithm “removes” the antennas so as to form the “most 

heterogeneous” antenna configuration where IA remains feasible. 

 

3.1.5 Simulation Results 

We start by verifying by simulations that IA is indeed achieved by our new IA algorithm. We consider for 

the simulations the [(2,3), (2,4), (3,5), (3,2), (4,2)] IC. This example has been chosen to illustrate our approach, 

but the CSIT reduction is different for each antenna configuration such that it is also relevant to consider 

the average reduction over all the antenna configurations.  

 

Figure 1: Average rate per user in terms of the normalized TX power for the tightly-feasible IC 

We show in Figure 1 the average rate per user achieved in terms of the SNR. We compare then our IA 

algorithm based on incomplete CSIT to the min-leakage IA algorithm based on complete CSIT. Our 

algorithm achieves virtually the same performance as the min-leakage algorithm. Hence, the reduction of 

60% of the feedback size comes for “free”, making it especially interesting in practice. 

We will now evaluate the feedback reduction obtained with our CSIT allocation policy in super-feasible 

settings. Since this gain depends on the antenna configuration, we show Figure 2 the average size of the 

CSIT allocation for K=3 users when the antennas are allocated at random to the TXs and the RXs according 

to the uniform distribution. Note that the antenna configurations obtained can make IA unfeasible. When 

this is the case, we redistribute the antennas until a feasible antenna configuration is obtained. 
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Figure 2: CSIT allocation sizefor K = 3 users. 

We average over 1000 antenna configurations and the proposed heuristic CSIT allocation policy is 

compared with the exhaustive search. The exhaustive search consists in testing all the possibilities for 

removing the additional antennas. For reference, we also show the average size of the complete 

(conventional) CSIT allocation. We consider only K=3 users because of the exponential complexity of the 

exhaustive search. 

If the aggregate number of antennas is strictly smaller than K(K + 1) = 12, it follows that IA cannot be 

feasible. The result obtained with 12 antennas distributed between all the nodes corresponds then to the 

tightly-feasible case. It is hence possible to observe how our CSIT allocation algorithm leads to a significant 

reduction of the required CSIT without requiring any additional antenna. If more than 12 antennas are 

available, each additional antenna is exploited by the heuristic algorithm to reduce the size of the CSIT 

allocation. This algorithm brings a reduction of the CSIT size which is only slightly smaller than the 

reduction brought by exhaustive search, but has a polynomial complexity. Note that allocating the 

antennas uniformly at random represents a worst case as it tends to generate homogeneous settings as 

the number of antennas increases. 

3.1.6 Conclusion 

IA feasibility is studied in the literature under the assumption of full CSIT sharing. In contrast, the relation 

between IA feasibility and CSIT allocation is investigated in this work. Specifically, it is shown how IA can 

be achieved in some cases without full CSIT sharing. When extra-antennas are available, the existence of 

a trade-off between the number of antennas available and the CSIT sharing requirements is shown. Our 

approach brings a significant reduction of the feedback size while introducing no losses in terms of DoF 

compared to the conventional IA algorithm with full CSIT sharing. 

Furthermore, IA with incomplete CSIT sharing raises additional interesting open problems that go beyond 

the scope of this section. Firstly, proving the minimality of our reduced CSIT allocation (or finding the 

minimal CSIT allocation policy) could not be achieved due to the difficulty in deriving a lower bound for 

the minimal size of a CSIT allocation preserving IA feasibility. Another interesting problem is to extend 

the study to multiple streams transmissions. Verifying IA feasibility represents already a difficult problem 

in this case so that the derivation of analytical results is challenging. However, the main idea behind our 

CSIT allocation algorithm directly extends to the general case with multiple-stream transmissions. 

Finally, the analysis has been carried out by considering the DoF which models the performance at 

asymptotically high SNR. At low to medium SNR, it is expected that CSIT incompleteness will lead to some 



rate loss as beamforming capabilities are reduced. Thus, an interesting problem lies in the trade-off 

between CSIT sharing reduction and finite SNR rate performance.  
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3.2 Interference Management with Topological CSIT 

3.2.1 Introduction 

Most known techniques for interference coordination and cooperation (such as interference alignment, 

coordinated beamforming and Joint Processing (JP)-CoMP) rely on the assumption that the transmitters 

are endowed with an instantaneous form of channel information whose coherence time is similar to that 

of the actual fading channels, so that a good fraction or the totality of the DoF achieved in the perfect 

CSIT can be obtained. Such an assumption is hard to realize in many practical scenarios. A closer 

examination of these pessimistic results however reveals that many of the considered networks are fully 

connected, in that any transmitter interferes with any non-intended receiver in the network. 

Owing to the nodes' random placement, the fact that power decays fast with distance, the existence of 

obstacles and local shadowing effects, certain interference links are unavoidably much weaker than others, 

suggesting the use of a partially-connected graph to model, at least approximately, the network topology. 

An interesting question then arises as to whether the partial connectivity could be leveraged to allow the 

use of some relaxed form of CSIT while still achieving a substantial DoF performance. In particular the 

exploitation of topological information, simply indicating which of the interfering links are weak enough to 

be approximated by zero interference and which links are too strong to do so, is of great practical interest. 

This problem was formulated in a partially connected interference channel, where the transmitters know 

only network topology but without knowing channel realizations, under the name of “topological 

interference management (TIM) [JAF14]”. 

The objective of this task is to answer the question whether such topological information can somehow be 

exploited in the context of an interference network where a message exchange mechanism between 

transmitters pre-exists. For instance, in future LTE-A cellular networks, a backhaul routing mechanism 

ensures that base stations selected to cooperate under the CoMP framework receive a copy of the 

messages to be transmitted. Still, the exchange of timely CSI is challenging due to the rapid obsolescence 

of instantaneous CSI and the latency of backhaul signalling links. In this case, a broadcast channel over 

distributed transmitters (a.k.a. network MIMO) ensues, with no instantaneous CSIT.  

The problem raised by this task concerns the use of topology information in this setting. In what follows, 

we formulate this problem and present some interesting results in brief. The detailed proof as well as 

more results can be found in our journal paper [YG14]. 

3.2.2 Problem Description 

We consider a network with K TXs e.g. cells. In each cell the TX (e.g. base station) is equipped with one 

antenna and serves one single-antenna RX. The partial connectivity of the network is modelled through 

the received signal equation for RX-j at time instant t by:  

 𝐘𝐣(𝐭) = ∑ 𝐡𝐣,𝐢𝐗𝐢(𝐭) + 𝐙𝐣(𝐭)𝐢∈𝓣𝐣      (3.17) 

where hi,j(t) is the channel coefficient between TXi and RXj, the transmitted signal Xi(t)  is subject to the 

individual power constraint, i.e., E[|Xi(t)|
2] ≤ P, with Pbeing average transmit power, and Zj(t) is the 

Gaussian noise with zero-mean and variance N0 and is independent of transmitted signals and channel 

coefficients. We denote by 𝒯kthe transmit set containing the indices of transmitters that are connected to 

RXk, and by ℛk the receive set consisting of the indices of receivers that are connected to TX k. In practice 

the partial connectivity may be modelled by taking those interference links that are “weak enough" (due 

to distance and/or shadowing) to zero.  

Conforming to the so-called Topological Interference Management (TIM) framework, the actual channel 

realizations are not available at the transmitters, yet the network topology (i.e.,𝒯k, ℛk, ∀k) is known by all 

transmitters and receivers. A typical transmitter cooperation is enabled, where every transmitter is 

endowed the messages desired by its connected receivers, i.e., TXk has access to a subset of 

messages,Wℛk where Wj, j ∈ ℛk denotes the message desired by RXj. We refer hereafter to this problem as 



“TIM-CoMP” problem. We consider a block fading channel, where the channel coefficients stay constant 

during the coherence time. The network topology is fixed throughout the communication. 

 

3.2.3 A Graph Theoretic Perspective 

As a baseline, an interference avoidance approach (also known as orthogonal access) with the aid of 

selective graph coloring is first presented for the general topologies. The detailed proof and the outer 

bounds can be found in our journal paper [YG14]. 

 Interference Avoidance via Graph coloring 

Before presenting the interference avoidance approach, we first introduce the following definition 

generalized from the standard graph coloring. Some basic graph theoretic definitions are recalled in 

Appendix A of our paper[YG14], which are also available in graph theory textbooks [WES01]. 

Definition(Fractional Selective Chromatic Number): Consider an undirected graph 𝒢 = (𝒱, ℰ) with a vertex 

partition 𝕍 = {𝒱1, 𝒱2, … , 𝒱p} where ⋃ 𝒱i = 𝒱
p
i=1  and 𝒱i⋂𝒱j = ∅, i  ≠ j. The portion 𝒱i(i ∈ [p] ≜ {1,… , p}) is called a 

cluster. A graph with the partition 𝕍 is said to be selectively n:m-colorable, if 

(i) each cluster 𝒱i, ∀i is assigned a set of m colors drawn from a palette of n colors, no matter 

which vertex in the cluster receives; 

(ii) any two adjacent vertices have no colors in common. 

Denote by sχf(𝒢, 𝕍) the fractional selective chromatic number of selective n:m-coloring over a graph with 

the partition , defined as 

𝑠𝜒𝑓(𝒢, 𝕍) = lim
𝑚→∞

𝑠𝜒𝑓(𝒢,𝕍)

𝑚
      (3.18) 

where 𝑠𝜒𝑓(𝒢, 𝕍) is the minimum n for the selective n:m-coloring associated with the partition . 

Remark: If m=1, fractional selective graph coloring will be reduced to standard selective graph coloring 

(a.k.a. partition coloring) [DER14]. If |𝒱i| = 1, ∀i ∈ [p], then fractional selective graph coloring will be 

reduced to standard fractional graph coloring [WES01]. 

Theorem(TIM-CoMP DoF): For the TIM-CoMP problem with arbitrary network topologies, the symmetric 
DoF 

𝑑𝑠𝑦𝑚 =
1

𝑠𝜒𝑓(𝒢𝑒
2,𝕍𝑒)

, 𝒯𝑖 ⊊ 𝒯𝑗 , 𝑎𝑛𝑑 𝒯𝑗 ⊊ 𝒯i    (3.19) 

can be achieved by an interference avoidance approach built upon fractional selective graph coloring, 
where 

𝒢e: the line graph of network topology 𝒢, where the vertices in 𝒢eare edges of 𝒢; 

𝕍e: a vertex partition of 𝒢e, specifically vertices in 𝒢ewhose corresponding edges in 𝒢have a common 

receiver form a cluster; 

𝒢e
2: the square of𝒢e, in which any two vertices in 𝒢ewith distance no more than 2 are joint with an 

edge; 

sχf: fractional selective chromatic number. 

By connecting the achievable symmetric DoF of TIM-CoMP problem to fractional selective chromatic 

number, we are able to calculate the former by computing the latter with rich toolboxes developed in 

graph theory. The connection will be illustrated by the following example whose network topology was 

studied in [NA13] with no transmitter cooperation (message sharing). 

 An Example 

We focus for example on the network topology shown in Figure 3 and message sharing across transmitters 

is enabled. The optimal symmetric DoF is pessimistically 1/3 without message sharing. In contrast, if 
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transmitter cooperation is allowed, the symmetric DoF can be remarkably improved to 2/5 even with a 

simple interference avoidance scheme. 

Without message sharing, the interference avoidance scheme consists in scheduling transmitters to avoid 

mutual interferences. In contrast, with message sharing, scheduling can be done across links rather than 

across transmitters. A possible link scheduling associated with Figure 3 is shown in Table 1. It can be 

found that each message is able to be independently delivered twice during five time slots, and hence 

symmetric DoF of 2/5 is achievable. 

Table 1: Link scheduling 

Slot Scheduled Links (eij: TX-i RX-j) Delivered Messages 

A e41, e55, e66 W1, W5, W6 

B e12, e54, e66 W2, W4, W6 

C e13, e54 W3, W4 

D e41, e33 W1, W3 

E e12, e55 W2, W5 

 

Although the above link scheduling solution provides an achievable scheme for the example in Figure 3 

the generalization is best undertaken by reinterpreting the link scheduling into a graph coloring problem, 

such that the rich graph theoretic toolboxes can be directly utilized to solve our problem. The nature of 

our problem calls for a distance-2 fractional clustered-graph coloring scheme, which consists of the 

following ingredients: 

 Distance-2 fractional coloring: Both the adjacent links and the adjacency of the adjacent links 

(resp.edges with distance less than 2) should be scheduled in difference time slots (resp.assigned 

with different colors). 

 Clustered-graph coloring: Only the total number of messages delivered by links with the common 

receiver (resp.colors assigned to the edges with the same vertex) matters. Thus, the number of 

assigned colors should be counted by clusters where the edges with common vertices are grouped 

together. 

As such, the reinterpretation of the link scheduling as a distance-2 fractional graph coloring is shown in 

Figure 3.To ease presentation, we transform graph edge-coloring into graph vertex-coloring of the line 

graph. We first transform the topology graph 𝒢 (left) into its line graph 𝒢e (right) and map the links 

connected to each RX in 𝒢 to the vertices in𝒢e. For instance, the four links to RX-2 in G are mapped to 

Vertices 3,4,5,6 in 𝒢e. Then, we group relevant vertices in 𝒢e as clusters, e.g., Vertices 3, 4, 5, 6 in 𝒢e 

corresponding to the links to RX-2 are grouped as one cluster. By now, a clustered-graph is generated. 

The graph coloring can be performed as follows. For instance, if Vertex 2 in 𝒢e receives a color indicated 

by ‘A’, Then Vertices 13 and 15 can receive the same color, because the distance between any two of 

them is no less than 2. Try any possible coloring assignment until we obtain a proper one, where each 

cluster receives m distinct colors out of total n ones, such that any two vertices with distance less than 2 

receive distinct colors. There may exist many proper coloring assignments. The fractional chromatic refers 

to the minimum of n/m among all proper coloring assignments. In this example, we have m = 2 and n = 

5. The vertices (i.e.,links in 𝒢) with the same color can be scheduled in the same time slot. Accordingly, 

each cluster receivingtwo out of five colors means every message is scheduled twice during five time slots, 

yielding the symmetric DoF of 2/5. According to the connection between link scheduling and graph 

coloring, the inverse of the fractional chromatic number can serve as an inner bound of symmetric DoF of 

the general cellular networks, although its computation is NP-hard (Non-deterministic Polynomial-time 

hard). 



 

 

Figure 3: A topology of the 6-cell network. 

 

3.2.4 An Interference Alignment Perspective 

To gain further improvements, an interference alignment perspective is introduced with the alignment-
feasible graph defined above, by which the sufficient conditions achieving a certain amount of symmetric 
DoF has been identified in our theorem. Further, by these conditions,we have identified the achievable 
symmetric DoF of regular networks. The detailed proofs and more results can be found in our journal 

paper [YG14]. 

 Interference Alignment with Alignment-Feasible Graph 

In what follows, we introduce a new notion of alignment-feasible graph, which indicate respectively 
the feasibility of interference alignment for any two messages. 

Definition (Alignment-Feasible Graph): The alignment-feasible graph (AFG), denoted by 𝒢AFG, refers to a 

graph with vertices representing the messages and with edges between any two messages indicating if 

they are alignment-feasible. Two messages Wiand Wj are said to be alignment-feasible, denoted by i ↔ j, 

if 

𝒯i ⊊ 𝒯j, and 𝒯j ⊊ 𝒯i     (3.20) 

Remark: The previous condition implies the alignment feasibility, that is, it is feasible to align these two 

messages Wiand Wjin the same subspace without causing mutual interference by choosing proper sources 

of transmitting, such that the transmitted signal of one message will not interfere the intended receiver 

of the other message.  

As such, given alignment-feasible condition, we are able to identify the sufficient conditions to achieve a 

certain amount of symmetric DoF as follows. 

Theorem(TIM-CoMP Symmetric DoF): For a K-cell TIM-CoMP problem with arbitrary topologies, the 
symmetric DoF 

𝑑sym =
2

K
      (3.21) 

are achievable, if there exists a Hamiltonian cycle or a perfect matching in 𝒢AFG. 

There is a very interesting observation. The alignment-feasible condition provided also implies the 

feasibility of selective graph coloring on 𝒢e
2. The fact that two messages satisfy the condition means there 

exist two vertices in two clusters i and j of 𝒢e
2 are not adjacent and hence can be assigned the same color. 

It follows that interference alignment is a general form of interference avoidance. Thus, interference 

alignment provides at least the same performance as interference avoidance. Even better, one advantage 

of interference alignment over interference avoidance is that, the number of dimensions of the subspace 
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to make interference alignment feasible could be less than the total number of colors (i.e., the total 

number of time slots to schedule links), as some subspaces may be absent at some receivers so as to 

decrease the number of required dimensions.  

Specifically, by the above interference alignment approach, we could identify the achievable symmetric 

DoF of regular networks as follows. 

For a (𝐾, 𝑑) −regular network, the symmetric DoF 

𝑑sym(𝐾, 𝑑) = {

2

d+1
, d ≤ K − 1

1

K
, d = K

     (3.22) 

are achievable, when channel coherence time satisfies 𝜏𝑐 ≥ 𝑑 + 1. 

In what follows, we present a detailed transmission scheme with interference alignmentfor an illustrative 

example. 

 An Example 

Let us consider the five-TX/RX pair regular network where each receiver is interfered by two other 

transmitters, as shown in Figure 4 By enabling transmitter cooperation, the symmetric DoF is improved 

from 2/5 to 1/2. In what follows, we will show an interference alignment scheme to achieve this.  

For notational convenience, we denote by a, b, c, d, e the messages desired by five receivers, with the 

subscript distinguishing different symbols for the same receiver. We use multiple time slots to transmit 

these symbols, where multiple time slots span a space such that each symbol will be sent along with a 

specific direction spanned by vector V in this space. In this example, we use in total four time slots, and 

the symbols are sentalong with the directions spanned by five 4x1 random vectors V1, V2, V3, V4 ∈ ℂ
4×1, any 

four of which are linearly independent.The transmitted signals within four time slots are concatenated as 

𝐗𝟏 = 𝐕𝟏𝒄𝟏 + 𝐕𝟑𝒅𝟏,𝐗𝟐 = 𝐕𝟐𝒅𝟐 + 𝐕𝟒𝒆𝟏     (3.23) 

𝐗𝟑 = 𝐕𝟓𝒂𝟏 + 𝐕𝟑𝒆𝟐,𝐗𝟒 = 𝐕𝟒𝒂𝟐 + 𝐕𝟏𝒃𝟐     (3.24) 

𝐗𝟓 = 𝐕𝟓𝒃𝟏 + 𝐕𝟐𝒄𝟐     (3.25) 

 

where Xi ∈ ℂ
4×1 is the 4x1 vector from TX-i with j-th element being transmitted signal in j-th time slot. 

With sufficient coherence time (i.e., four time slots in this example), the received signal at RX-1 for 

example within four time slots can be written as 

𝐘𝟏 = ∑ 𝒉𝟏,𝒊𝑿𝒊 +𝒁𝟏  = 𝒉𝟏,𝟏𝑿𝟏 +𝒉𝟏,𝟑𝑿𝟑 +𝒉𝟏,𝟒𝑿𝟒 +𝒁𝟏𝒊∈𝓣𝟏     (3.26) 

       = 𝒉𝟏,𝟑𝑽𝟓𝒂𝟏 +𝒉𝟏,𝟒𝑽𝟒𝒂𝟐 +𝑽𝟏(𝒉𝟏,𝟏𝒄𝟏 +𝒉𝟏,𝟒𝒃𝟐)+𝑽𝟑(𝒉𝟏,𝟏𝒅𝟏 +𝒉𝟏,𝟑𝒆𝟐)+𝒁𝟏  (3.27) 

Recall that V1 , V2, V3, V4 ∈ ℂ
4×1 are 4x1 linearly independent vectors spanning four-dimensional space, by 

which it follows that the interferences are aligned in the two-dimensional subspace spanned by V1and V3, 

leaving two-dimensional interference-free subspace spanned by of V4 and V5 to the desired symbols a1, a2. 

Hence, the desired messages of RX1 can be successfully recovered, almost surely. Applying this to all 

other receivers, all receivers can decode two messages within four time slots, yielding the symmetric DoF 

of 1/2. 

To illustrate the interference alignment, we describe the transmitted signals geometrically as shown in 

Figure 4. In this figure, we depict the subspace spanned by V1, V2, V3, V4, V5 as a four-dimensional space, 

where any four of them are sufficient to represent this space. We also denote the message for example 

Wj sent from TX  i by Xi(Wj). Let us still take RX1 for example. Because of 𝒯1 = {1,3,4}, the transmitted 

signals from the transmitters that do not belong to 𝒯1will not reach RX1, and hence the vector V2 is 

disappeared. In addition, we have the interference-free signals in the directions of V4 and V5, and the 

aligned interferences carrying messages other than a1, a2 in the subspace spanned by V1 and V3. Recall that 



vectors V1, V2, V3, V4 are linearly independent, almost surely. As such, the interference alignment is feasible 

at RX-1, and also it can be checked to be feasible at all other receivers. 

 

Figure 4:Illustration for a regular cellular network. 

3.2.5 Conclusion 

The topological interference management problem with transmitter cooperation, named TIM-CoMP 

problem, is considered from both interference avoidance and alignment perspectives. The achievable 

symmetric DoF is identified for a class of network topologies. Two illustrative examples are provided, by 

which the main interference management techniques, e.g., afractional graph coloring based interference 

avoidance and an interference alignment approaches, have been proposed, shedding light on how to 

generally exploit the benefits of both topological knowledge and transmitter cooperation. More results on 

larger classes of network topologies and the optimality can be found in our journal paper [YG14]. 
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4 INTERFERENCE MANAGEMENT WITH REALISTIC CHANNEL MODELLING 

4.1 Realistic Channel Modelling and Network Simulation 

In deliverable D3.1 [D3.1, Section 5], we introduce a realistic simulation framework whose aim is to 

reduce the gap between real network performance and simulations using simplified models. Scenarios are 

proposed to tackle different network configurations and management techniques, and investigate the 

impact on radio network performances. The network setup, user traffic distribution and multi-cell multi-

user 3D radio predictions compose together a reference evaluation framework that can be interfaced with 

third-party system-level simulators. It may be used (and customized) in the innovation WPs for simulation 

and assessment of HetNet deployment and algorithm performance in terms of service coverage, network 

capacity, energy efficiency and fairness. 

In this deliverable, we present further results obtained for the case in which we consider only the macro-

cell layer and develop possible interactions with partners. Figure 5 presents the macro-only network 

together with its main deployment parameters. This figure shows the macro-cells deployed on two rings 

(in orange and blue) around a central three-sector site (in red) with an average Inter-Site Distance (ISD) 

of 450 m. These are not located on real sites, but dominant locations have been selected that are 

representative of an operational network. 

 

 

Figure 5: Macro-cell layer deployment in a real dense urban 

environment. 

 Hexagonal site deployment: two 

rings around the central site, i.e. 

19 sites corresponding to 57 cells 

(three cells per site). 

 Average inter-site distance: 450 

m. 

 Average antenna height: 32 m 

above ground. 

 Maximum total transmit power: 40 

W per antenna. 

 Antenna: directional, 14 dBi gain. 

 Antenna electric down-tilt: 6°. 

 

A square calculation zone of 1250 m side length and 5 m resolution is centred on the central macro site, 

representing UE locations at 1.5 m above ground. The path-loss from each eNodeB (eNB) to each UE 

location is computed with a highly efficient ray-based propagation model, Volcano [CL09] at a frequency 

of 2.6 GHz. The cell selection is assumed to be based on the best DL received power from each cell. Figure 

6on the left displays the best server map, showing in distinguishable colours the index of the selected cell 

at each UE location. On the right of Figure 6, the resulting received power after cell selection is shown. 



 

 

 

 

Figure 6: Cell selection (left) and received power from selected cell (right). 

 

The best server map and the path-loss results can be combined to compute the interference from the non-

serving cell on the DL at each UE location. The calculation relies on a simple abstraction of Orthogonal 

Frequency Division Multiple Access (OFDMA) Media Access Control (MAC) layer protocols without any 

interference mitigation technique: the allocation of resource blocks is uniformly distributed in time and 

frequency domains, and performed independently in each cell. The average interference level in a given 

Resource Element (RE) coming from a non-serving cell thus depends on the received power from this cell 

and the likelihood that the same RE is used by this cell. This probability is directly linked to the traffic load 

of the considered interfering cell, which ranges from 0 to 100%. The total interference level in W is finally 

given by: 

i

ji

ii PLTLEPREI ..


      (4.28) 

where: 

- i is the index of the interfering cell, 

- j is the index of the serving cell, 

- EPREi is the Energy Per Resource Element of interfering cell i, in W, 

- TLi is the traffic load of interfering cell I, 

- PLi is the path-loss between interfering eNBi and the UE, including antenna radiation gain. 

 

Figure 7 is the resulting DL interference map obtained for a typical 10 MHz bandwidth and 50% traffic 

load for all cells; a single antenna is used both at the eNB and the UE. We observe strong interference 

levels in large open areas which are covered without obstruction by multiple eNBs. This interference map 

is the basis of other post-processing aiming at assessing the network performance. In deliverable D3.2 

[D3.2, Section 4], we evaluate the impact of beamforming on Signal to Interference plus Noise Ratio 

(SINR) and mean user peak throughput. In deliverable D4.2 [D4.2, Section 3.6], we add the small-cell 

layer and refine the interference calculation to take into account the cell range extension bias and the 

almost-blank sub-frame duty cycle. Several quality of service metrics are assessed under different small-

cell deployment strategies. The interference map may also be refined with more precise RRM algorithms. 
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The ‘Joint Location and Interference Prediction for ICIC’ innovation described in the following section can 

actually take advantage of the deterministic path-loss maps to predict more realistic interference maps. 

 

 

Figure 7: Interference map. 

 

4.2 Joint Location and Interference Prediction for ICIC 

To meet the constant growth of traffic, the 3GPP LTE-Advanced (LTE-A) and beyond explores ways to 

extend LTE technology in order to reach very high data rates (i.e., on the order of 1 Gbps) and high 

spectral efficiency (i.e., 30 b/s/Hz and 2.6 b/s/Hz as peak and average values, respectively). However 

some of the proposed techniques, such as Massive MIMO [LET14] and Non-orthogonal multiple access 

[OIS12] are complex and significant research efforts are still needed to bring the latter solutions to reality. 

In the meantime, a straightforward but extremely effective way to increase the network capacity is to 

make the cells smaller and keep the network closer to the user. Thus future wireless networks are 

becoming more and more heterogeneous, as we move towards 5G. Heterogeneous networks (HetNets) 

are deployed according to the non-uniform users’ distribution, in the sense they are constructed with 

layers of macro and small cells, and accommodate other technologies e.g. Wi-Fi. Since the inter-cell 

interference (ICI) level suffered by users in downlink depends on the relative positions of mobile users 

and the fixed elements of infrastructure, an increase of cell densification implies an increase of cell edge 

users suffering from a high ICI level. Several techniques of Inter-Cell Interference Coordination (ICIC) 

and/or Cancellation have been proposed in the literature to mitigate the interference level and improve 

the users SINR in heterogeneous networks such as, the frequency domain ICIC using the Soft Frequency 

Reuse technique [BPG10] [GBG11] and the time domain ICIC based on the Almost Blank Subframes 

[DMM14].  

In order to use the time and/or frequency domain ICIC, users are classified into two sets: small cell users 

and macro cell users. This classification is based on the users long-term SINRs w.r.t. the different base 

stations which depends on their location. Thus, the ICI Coordination/Cancellation techniques may take 

advantage of external (and most often static) information such as location and average interference levels. 

On the other hand, to fully exploit the LTE-A network capacity, the major challenge of standard 

communication in such environments is to provide a good spectral efficiency and fairness among users, 

even for cell edge users, by adopting an adequate Radio Resource Management (RRM) policy and flexibility 

between the cells in terms of cell size fluctuation (e.g. cell zooming techniques [ZKZ13]). 

The capability to properly manage the inter-cell interference, to manage and allocate time/frequency 

resources, to offload the data traffic, to define optimal packet relaying strategies, or to optimize the 



transmission parameters, is clearly conditioned on the actual levels of interference suffered by the users 

whatever their location. Then a way to perform this optimization is to provide these systems with 

information about the instantaneous ICI level at each pixel of the area of interest. 

Our goal is to propose a joint location and interference prediction in order to assist subsequent location-

based ICIC mechanisms, and enable better in-site dynamic spectrum access. The temporal aspect of the 

joint location and interference prediction could be exploited for instance in issues such as radio resource 

allocation, traffic offload and handovers decisions. Thus, in the frame of this study, we aim at estimating 

the inter-cell interference level suffered by users in the downlink of a heterogeneous network, according 

to their locations. The main idea is to create a 2D interference map. A third dimension representing time 

will be incorporated to the interference map where users’ tracking mechanism and interference time 

varying prediction will be considered. The proposed spatio-temporal interference map scheme is illustrated 

in Figure 8. For more details about the proposed method and the main steps to build the spatio-temporal 

interference map, please refer to [D3.1, Section 4.4]. . 

As a first step we have to build a 2D interference map. Such maps have already been mentioned in the 

recent literature. However the optimal and most practical way to build them is still an open issue. A state 

of the art was presented in the previous deliverable [D3.1, Sections 4.4.1 – 4.4.3]. The investigated 

methods were classified in three types: statistical interference estimation, deterministic interference map, 

and interference map based on low resolution fingerprint. In our work, we focus on the statistical type 

which is essential for the interference map initialization especially when starting from scratch. The 

interference map obtained with such methods is universal and can be applied without a priori information 

about the area infrastructure. In addition, the statistical interference estimation is able to take into account 

different network configurations e.g. the networks’ activity rate which is essential when heterogeneous 

networks are considered. 

Figure 8: Space/time interference prediction. 

The statistical characterization of inter-cell interference level has been investigated for a long time, under 

different scenarios, and following several approaches. Both regular networks (i.e., BSs position following 

a hexagonal grid) and random networks (i.e., BSs positions modeled with a Poisson Point Process (PPP)) 

were investigated. In practical deployment, BSs positions do not follow an hexagonal grid. Figure 9 

illustrates the inter-cell interference Cumulative Distribution Function (CDF) obtained in both regular and 

random networks, assuming identical BSs densities. It is noticeable that the ICI distributions obtained in 

both cases are not similar. With the study carried out in [GWC13] which compares the SINR CDF curves 

obtained in the two deployments with the one obtained in a realistic environment, the accuracy of the 

stochastic geometry approach has been proved once again: the SINR CDF obtained in a random network 

is closer to the realistic SINR CDF than the one obtained in a regular network. Indeed, the random network 

model copes with the heterogeneous network complexity, especially for the small cells configuration (e.g. 

small cells sleep mode). Thus, in this work, the stochastic geometry approach is considered. Its flexibility 
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and a large arsenal of mathematical tools can lead to a closed form of the inter-cell interference estimation 

analytical model. 

4.2.1 Statistical interference estimation state of the art – Stochastic approach 

The stochastic approach has been widely considered in the literature, especially to enable in-depth 

theoretical analysis in K-tier heterogeneous networks. In [DGB12] for instance, the authors derive the 

expression of the coverage probability, average rate achieved by a randomly located user and average 

load of each tier’s BS. In [WG14], considering Rayleigh fading only, the DL interference in K-tier HetNets 

is estimated based on the moment generating function. The authors have subsequently extended their 

study in order to estimate the wireless activity according to the measured interference level power in 

[WG13]. Downlink interference statistics are also derived in [BHA11], where the cumulants of the 

interference are given for random punctured PPP, assuming that the latter keeps its Poisson properties. 

The cumulants expression derivation requires the joint statistics of the distance between the transmitters 

and the receivers. Both the case of a unique transmitter and the case of multiple transmitters were 

investigated. One step further: a mobility model is considered in [GH14] in order to derive the expectation 

value of the interference. However, all these studies have in common to consider only the fast fading 

effects, modelled by Rayleigh or Nakagami-m distributions.  

To the best of our knowledge, when stochastic geometry is applied, only few works take into accountlog-

normal shadowing for modelling the networks statistics.They thus neglectits significant impact on the 

user’s received signal strength. This is mainly due to the high complexity of the mathematical analysis 

and the inability to derive closed forms since there does not exist any generic expression for the Probability 

Distribution Function (PDF) of a sum of lognormal random variables. So as to derive an analytical upper 

bound for the dimensioning outage probability respectively in Uplink (UL) or DL LTE networks, the authors 

of [KMD13] and [DFM09] consider shadowing as a mark of the PPP. To characterize the UL interference 

profile experienced by autonomous self-organizing femto cells, modelled with a Binomial Point Process 

(BPP), the authors in [LBC10] use a Gauss-Hermit polynomial function [PT04] to approximate the moment 

generating function of the lognormal shadowing. Using the same approximation technique and considering 

PPPs, the cumulants of downlink co-channel interference are derived in [LBL13] for a self-organizing 

network with biased cell association and interference coordination. 

 

Figure 9:  Cumulative distribution function of inter-cell interference level in regular and random network. 

In [DA13], based on the Signal to Interference Ratio (SIR) expression, the downlink rate distribution 

expression is derived under a generalized cell selection model. In their analysis, the shadowing is 

considered as a transformation of each location where the SIR distribution is derived by applying the 



displacement theorem [BB09] as detailed in the Lemma below to the SIR distribution derived in [JSX12] 

in case of Rayleigh fading effects only. After defining the Path Loss Process with Shadowing (PLPS), authors 

of [ZH14] derive the coverage probability expression for inter-cell interference coordination and intra-cell 

diversity networks, where the fading coefficient and the scheduling decision are considered as a mark of 

the PLPS. The authors of[HKB12] opted for approximating the product of the fast fading and the shadowing 

coefficients with a gamma distribution by modelling the Rayleigh fast fading with a gamma distribution of 

both shape and scale equal to 1 (i.e., Γ(1,1)). Based on this approximation, the Laplace transform of the 

interference in Heterogeneous network is derived.  

Relying in part on some of the previous results and intermediary derivations (and more particularly, on 

works carried out in[WG14]  and [DA13]), our goal herein is to develop a new analytical model for location-

dependent DL ICI estimation in K-tier HetNets, that takes into account the radio environment propagation 

and especially the shadowing impact. The model only assumes (as inputs) that: 

 The UE position is a priori known (e.g., pre-positioned in a real system through GPS 

and/or any terrestrial wireless means). 

 The BS density, path loss model including shadowing standard deviation are known a 

priori.  

Since the aggregate inter-cell interference depend on the frequency allocation, both separate frequency 

allocation and co-channel deployment are investigated. The following section presents the considered 

scenario and the main assumptions. 

 

4.2.2 Considered assumptions and scenario 

In our study, we focus on inter-cell interference in K-tier heterogeneous network, modeled with a 

superposition of K independent homogeneous Poisson point processes Φ𝑘 =  {𝑥1,𝑘 , 𝑥2,𝑘 , … , 𝑥1,𝐾} of intensity 

𝜆𝑘, where 𝑘 =  1,… , 𝐾, and 𝑥𝑖,𝐾 denote the 2 dimensional  K-th tier BSs coordinates. Figure 10 shows a 

realization of a two-tier heterogeneous network, composed of macro BSs (blue triangles) distributed 

according to a homogeneous PPP of intensity 𝜆𝑚 and small BSs (red circles) distributed with a 

homogeneous PPP of intensity 𝜆𝑠. 

LTE-A standard compliant scenario is considered where OFDMA technique is used for resource allocation. 

Thereby, intra-cell interference is cancelled and the total interference received by a user u on the downlink 

is caused only by the nodes transmitting on the same frequency band. However the macro and small cell 

base stations (e.g., micro, pico, femto cells) can be allowed to transmit in: 

1. the same frequency band, which is known also as a co-channel deployment: in this case, 

the users are interfered by all the network nodes without distinction between tiers and the 

aggregate interference is called a co-channel interference. 

2. separate frequency bands,in which case the inter-cell interference is called a co-tier 

interference, where the interference is generated between network elements 

on/belonging to the same layer. The macro cell users and the small cell users are 

interfered only by the macro cell base stations and the small cell base stations, 

respectively. 
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Figure 10:Two-tier heterogeneous network realization: Both macro (blue triangles) and small (red 

circles) BSs are distributed as independent PPPs with𝝀𝒎=𝟐𝝀𝒔. 

The analytical model of location-based ICI is derived in both cases of deployment and considering various 

sources of channel variations. 

 

First, a standard path loss function that depends on the distance
kiki xr ,,   between the user and the 

interfering base station i is used. The path loss function is classically expressed by:  

 
 kiki rlrPl ,, )(  (4.29) 

where, l  and  >2 are respectively, the constant path loss and the path loss exponent. Their values depend 

on the considered scenario (i.e., macro or small cell scenario), and can be instanced by using the 

corresponding models specified in [E-UTRA10]. 

 

In addition, Rayleigh fast fading effect is taken into account by a path loss multiplicative factor hi that 

follows an exponential law  h~exp(1) .  

 

In [KVP12] it has been shown that the shadowing has a considerable impact on the ICI level. Thus, in our 

study a lognormal shadowing 10/10 z , such that ),(~ Nz  is considered μ and σare, respectively, 

the shadowing mean and standard deviation in dB. We denote asμkand σk the specific shadowing 

parameters associated with the kth tier. Actually, such shadowing leads to a non-closed form of both the 

channel model and the ICI expression. That is the main reason why, following the same approach as in 

[DA13] and [KBK13] we include the shadowing in the path loss computation as: 

 


 
 )(),( ,

1

,,, kikikiki rlrPl  (4.30) 

 
This is possible through the displacement theorem [BB09]. Considering the shadowing as a random 

displacement of the base stations locations, the following lemma is derived. 

 

Lemma: Let 2

21 },,{= R xx  be a homogeneous PPP of intensity  . If each point ix  is transformed 

as 
2Riy  such that iii xy  1/= 

, where the variables 
i  are independent and identically distributed 

(i.i.d) and <)(
/2 

 iE , where E denotes expectation, the resulting point process },,{= 21

)( yye  is 

also a homogeneous PPP with intensity ][=
2)( 

 i
e E . 



According to Lemma, the new Process 
)(e

k , defined by the transformed location of equation (4.30), is 

also a homogeneous PPP whose intensity 
)(e

k  depends on the intensity 
k  of the original PPP and on 

][
2
 kE  the fractional moment of the shadowing (dropping the index i by abuse of notation). This method 

can be used for any general distribution of k  as long as <][
2
kE . In case of a lognormal 

distribution, the fractional moment is 
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  kkE [DA13]. It is noticeable that 

<][
2
kE  when both 

k  and 
k  are finite. 

 
Based on these radio environment parameters, a location-dependent DL ICI level analytical model is 

derived in the next section. 

 

4.2.3 Location-dependent inter-cell interference estimation 

The downlink inter-cell interference incurred by each user is computed as the total received power from 

the neighboring nodes transmitting in the same frequency band. It depends on the deployment type. 

Thus, in the next subsections, analytical models are derived for both co-tier and co-channel interference 

cases. Due to the path loss, the interfering signal strength mainly depends on the distance between the 

interfered user and the interfering node. At large scale (i.e., ri>>1) the interfering signal strength becomes 

negligible. In order to derive the location-dependent inter-cell interference level expression, we limit the 

zone of observation to a ring area around the user, inscribed between two circular areasrespectively of 

radius Rob (i.e., the radius of the observation zone) and r (i.e. the minimum distance between the user 

and the interfering BSs), as shown in Figure 11. Without loss of generality, the downlink analysis is 

performed at a typical user assumed to be located at the origin [BB09]. 

 

 
 
Figure 11:Observation zone containing the more interfering BSs. Rob is the observation zone radius. r is 

the minimum user-interfering BS distance. 

 

a- Co-tier interference estimation 

In a separate frequency deployment, the user u  is interfered only by the neighboring BSs of the same tier 

i.e., the BSs located at kix ,  where kkix ,  except 
sb  the serving BS. BSs transmit power is denoted by 

kP , assumed to be constant for each tier. For the sake of simplicity, we note in this subsection the 



Celtic-Plus SHARING          Document D3.4 

 

Public distribution  31 (46) 

transmission power as P , and drop the index k for all variables, since the analysis concerns only one 

tier. The total co-tier interference is then: 

 
 



 )(= /1

,

iii

s
bi

k
i

t rlhPI  (4.31) 

Since there is no known expression for the PDF of the inter-cell interference, the Moment Generating 

Function (MGF) is used to characterize it: 
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  are the transformed locations.  

(a) is obtained with the moment generating function of the exponential variable. Similarly, (b) results 
from the expression of the moment generation function of a PPP given in [SKM87]and of an integration 

by substitution considering )(=2 

r
s

u . 

For 4= , we obtain 
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The PDF )( tI If
T

 of the co-tier interference can be easily derived by computing the inverse Laplace 

transform of the MGF as: 
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Hence, the PDF of 
tI  is expressed as[AS64]:  
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and the Cumulative Distribution Function (CDF) is derived accordingly as:  
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In order to build the interference map, we choose the median value of the co-tier interference (i.e., an 

arbitrary quantile 0.5= ). The performed analysis is still valid for any arbitrary a priori quantile. Thus, 

the median value is expressed as:  
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One can notice that the analytical model of the co-tier interference median value is given as a function of 

r  the minimum distance between the user and the interfering BS, which depends on the user's location, 

assumed known.  



b- Co-channel interference estimation 

In co-channel deployment, the user u  is interfered by all the BSs transmitting in the same frequency 

band. In fact, the global point process that models the K-tier HetNets is a superposition of K  independent 

homogeneous PPP. Let Kkk ,1,2,= ,=   , where 
k  models the 

thk  tier homogeneous PPP of 

intensity 
k  and 

kP  the transmission power with which each tier contributes to the aggregate co-channel 

interference. When an open access is considered i.e., when the user can connect to a BS from each tier, 

the resulting overall co-channel interference is equivalent to the sum of the co-tier interference terms 

computed for each tier, and can be expressed as: 
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The same assumptions in terms of network configuration as those used in the previousdeployment are 
thus considered. We define

kG ~ )(exp k  a random variable that corresponds to each tier k, where 

k

k
Pl 

1
= . The same steps as the ones used in a co-tier interference PDF derivation are performed.  

For a K-tier network, we define Kkk ,1,=,  =   .  

The MGF of the co-channel interference is:  
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The PDF of 
cI  is expressed as:  
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where 
kkkm rrr },{min= , is the minimum distance between the user and the interfering BS without 

distinction regardless of its belonging tier. 

Hence, the CDF is:  
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Similarly to the previous subsection, to obtain the interference map in a co-channel deployment, an 

arbitrary quantile 0.5=  is used. The median value of the co-channel interference 
c

IM  is then: 
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The value of 
c

IM  given in Equation  (4.41) is an immediate consequence of Equation (4.40). 

4.2.4 Location-dependent ICI mapping performance evaluation 

For performance analysis, we consider a two-tier LTE HetNet e.g., macro and micro cell, operating at a 

carrier frequency 
cf  of 2.6 GHz. The macro base stations are modeled with a homogeneous PPP of 

intensity 
610. 5= 

m  BS/
2m . The number of deployed small cell is obviously higher, then we model them 
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with a homogeneous PPP of intensity 
ms  2= . The resulting HetNet is then a superposition of the two 

PPPs. We assume that the macro base station transmission power is set to dBm 43==1 mPP  whereas, 

the transmission power of the small cell BSs is set to dBm 33==2 sPP [3GPP1]. The interfering base 

stations are considered to be in Non-Line Of Sight (NLOS), thus the NLOS Urban Macro (UMa) propagation 

model is considered for the path loss computation of macro BSs and the Urban Micro (UMi) path loss 

model for the small cell BSs [E-UTRA10]. The lognormal shadowing is considered centered (i.e., 0=k

) with a standard deviation 
k  of 6 dB and 3 dB in macro and micro cell scenarios, respectively. 

Figure 12shows the co-tier interference map in a macro cell scenario, obtained with the corresponding 

analytical model derived in the previous section. With the colormap, we notice that the the co-tier 

interference median value as given by the above analytical method overall reflects the inter-cell 

interference behavior. When the distance between the user and the interfering base station gets smaller, 

the median value of the co-tier interference is higher, as expected. The cell edge users are exposed to a 

high interference level, except when the interfering base stations are farther, due to the large cell size. 

In order to study the reliability and the validity of the underlying analytical model, our inter-cell 

interference map is compared to a realistic ICI map obtained through simulations, following a brute force 

method, where the snapshot ICI level is computed over all the possible user's locations in the area on 

interest, depending on the network node positions. Without loss of generality, the numerical results 

presented in this section are obtained in case of a separate frequency band allocation and the analytical 

performance analysis is only related to the co-tier interference. The same conclusions are obtained in case 

of co-channel interference analytical model. 

 

Figure 12:Co-tier Interference map in Macro cell scenario. 

For a given deployment shown in Figure 13 left, an analytical co-tier interference map (i.e., based on our 

median model) and a realistic simulation-based map (thus reflecting the actual instantaneous interference 

level suffered by the UE) of a central cell (presented with a red BS) are illustrated in Figure 13 middle and 

right, respectively. The color code represents the co-tier interference level. 



 

Left                                                               Middle                                                                Right 

Figure 13:Co-tier analytical and simulated maps. 

The co-tier interference level obtained with the analytical model is smoothed. The value varies according 
to the distance from the interfering BSs. When comparing to the realistic case, it is noticeable that the the 

analytical model overestimates co-tier interference level in areas close to the strongest interfering BS. 

To identify these areas, the relative error between the analytical co-tier interference median value and 
the realistic co-tier interference is illustrated according to the user's location inFigure 14. We notice that, 
in most cases (i.e. 70% of the tested locations), the proposed analytical model overestimates the co-tier 
interference level with a relative error less than 5 percentile (which corresponds to 2 dB absolute error). 
The large difference between the realistic co-tier interference and the analytical prediction concerns the 
area close to the strongest BS.. In fact, with the analytical prediction, the co-tier interference level 
degrades slowly as a function of the distance r , which means that the areas where users suffer from high 

theoretical ICI level are extended. 

 

 

Figure 14: Relative co-tier interference error in ( % ). 

4.2.5 Conclusion and future work 

The interest of the proposed location-dependent ICI estimation model lies in its low computational 

complexity (making implementation practical for embedded predictions) and its simplicity with respect to 

the required input parameters (i.e., small amount of required a priori information). The proposed model 

indeed needs the followinginputs: i) information about the network configuration (i.e., the BS density and 

the shadowing standard deviation) that can be defined according to the studied area (e.g., dense urban, 

urban, rural, etc.) and ii) the user's location that can be obtained by GPS (in outdoor), which nowadays 
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most smartphones are equipped with, or relying on various methods such as fingerprinting, trilateration, 

triangulation, tracking filters, message-passing, etc.  

Hence, such a model will be applied as an initialization of the spatio-temporal interference map, when 

starting from scratch. The coarse statistical model will be refined and updated iteratively, according to the 

geo-referenced metrics collected in the locations physically visited by the mobile terminals, in a self-

learning step. As an example, in relevant approaches from the recent state of the art, most of them exploit 

the RSS measured by users moving around in the area. In our case, this metric can be exploited in order 

to refine the interference map. 

Then, user tracking will be performed using the user’s location information, the collected radiolocation 

metrics and their a priori mobility models. Using jointly the interference map and the UEs’ tracking process, 

the inter-cell interference suffered by users at the location visited in the next Transmission Time Interval 

(TTI) will be estimated. This inter-cell interference level will be considered as an input to the location-

based ICIC mechanisms. 

Up to now, we have assumed that the user’s location is known. In future work, we will consider an 

uncertainty of the estimated positions (mobile users and fixed elements) and will evaluate the 

performances of the proposed analytical model accordingly. Afterwards, the minimum required position 

accuracy will be determined, delivering insights about the adequate positioning methods and radiolocation 

technologies. In particular the additional resources to be committed to achieve sufficient interference map 

accuracy will be derived with respect to the primary system deployment scenarios (i.e. radio relying on 

LTE only, or LTE+UWB, of UWB only,  radiolocation involving non-cooperative with respect to fixed anchors 

only or also cooperative links, etc.). 



5 CALIBRATION FRAMEWORK FOR PHYSICAL LAYER ABSTRACTION OF (TURBO) 

CODEWORD IC RECEIVERS 

 

5.1 Introduction 

Within the evolution of wireless systems, the cross layer optimization between PHYlayerand MAC has 

drawn a lot of attention, due to the improved data rate and QoS it offers. InMIMOtransmissions, the PHY-

MAC cross layer design is based on mechanisms such as Fast Link Adaptation (FLA), which exploits the 

instantaneous feedback from the receiver to inform the transmitter about the radio link quality (see, e.g., 

[JKW10] ). The key idea of the FLA mechanisms are to predict the Packet Error Rate (PER) for different 

Modulation and Coding Schemes (MCSs) in order to select the MCSs together with the MIMO precoding 

that maximize the throughput under a certain QoS constraint (10% PER in LTE). Therefore, accurate and 

fast prediction of the link-level performance at the receiver side is of paramount importance for advanced 

mobile communications. Due to the constraints of limited feedback and finite size precoding codebooks, 

the residual interference at the receiver output remains a major impediment to reach the high MIMO 

spectral efficiencies promised by information theory. That is why advanced receivers regain a lot of 

attention in 3GPP [3GPP12]. Among them, the turbo Linear CodeWord Interference Cancellation (turbo L-

CWIC) receivers in 3GPP, offer a particularly interesting trade-off between complexity and performance. 

As a result, PHY abstractions, that are able to capture their behavior in order to derive precisely the limited 

feedback metrics is of great interest in practice. The conventional PHY abstractions rely on the assumption 

that an analytical SINR formula exists. Nonetheless, in the case of reduced complexity ML receiver, 

reference [LKP13] proposes to use approximate SINRs that results from the calibrated combination of the 

Linear Minimum Mean Square Error (LMMSE) SINR and the Genie Aided SNR (the Genie Aided SNR models 

a receiver that can remove perfectly the interference). 

In this work, we address the design of PHY abstractions for the class of turbo L-CWIC receivers. We build 

our work on previous research studies in this field, e.g., [CVS08,LKP13] The proposed PHY abstraction is 

inspired from the EXtrinsic Information Transfer (EXIT) chart framework [NVB13] which underlines the 

MIESM compression technique [BAS05]. The key idea is to estimate at a given iteration the ESM at the 

output of the LMMSE filters, then to calculate the Interference Estimation Reliability (IER) variance for the 

next iteration. The IER variance along with the CSIR, are able to reproduce the ESM for the next iteration 

and so on. In [NVB13], a one-dimensional (1D) calibration has been proposed to minimize the prediction 

error caused by invalid assumptions inescapable for the sake of SINR derivation. These assumptions yields 

too optimistic PER predictions. Herein, we revisit the calibration method by proposing a more rigorous 

framework to minimize the predicted throughput error that dramatically influences the FLA mechanisms. 

We also suggest a novel multi-dimensional calibration approach that corrects the ESM by both increasing 

the IER variance and applying two correction factors to the MIESM compression. 

 

Figure 15: STBICM transmission scheme within a FLA framework. 

5.2 System model 

  We consider a single-user coded MIMO transmission over a flat block Rayleigh fading channel. It is a 

building block for any extension to multi-user coded MIMO transmission [VBL10]. The transmitter and 

receiver are equipped with nt transmit and nr receive antennas, respectively. The number of channel blocks 

is denoted by nb and the total number of channel uses L. The channel is assumed to be perfectly known 
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at the receiver. The MIMO coding scheme is a Space-Time Bit Interleaved Coded Modulation (STBICM). 

The transmission scheme is exhibited in Figure 15 within a FLA framework. The binary information are 

firstly encoded using a linear channel encoder. Then, the encoder output is space-time interleaved to yield 

the interleaved coded bits per antenna which are finally modulated independently with Gray labeling. The 

modulated symbol vectors are then sent over the space time dimensions or channel uses. Let Hb ∈ ℂ
nr×nt 

denotes the channel for the b-th fading block. The received vector yb,l ∈ ℂ
nr at the destination during the 

b-th fading block and channel use l = 1,⋯ , L/nb is expressed as  

 𝐲𝒃,𝒍 = 𝐇𝒃𝐬𝒃,𝒍 +𝐰𝒃,𝒍.     (5.42) 

In (4.40), the modulated symbol vectors sb,l = [sb,1,l, ⋯ , sb,nt,l]
T are i.i.d. random vectors with 𝔼[sb,l] = 0nt and 

𝔼[sb,lsb,l
† ] = Int, and the vectors wb,l ∈ ℂ

nr are i.i.d. random vectors, circularly-symmetric Gaussian, with zero-

mean and covariance matrix R = σ2Inr. The channel coefficients are normalized such that ρ = 1/σ2 is the 

average SNR per receive antenna. We denote h = vec(H) and c = [vec(H)T, ρ]T the channel coefficients and 

the CSIR, where H = [H1   ⋯  Hnb] where vec(H) = [h1
T, … , hn

T]
T
,hi being the i-th column of H 

Note that STBICM with linear precoding is straightforwardly encompassed by including the precoder into 

the channel H. 

 

5.3 LAPPR-based turbo L-CWIC 

5.3.1 Turbo L-CWIC architecture 

 We consider in the following the LMMSE-IC with parallel scheduling since the coding is performed across 

antennas in STBICM. The first step is to subtract the interference estimated from the previous iteration. 

The resulting signal is then filtered and demapped to its original binary form. The resulting bits are de-

interleaved according to the space-time interleaving rule applied at the transmitter. The channel code is 

a turbo code similar to what is implemented in LTE. Once the activation of the turbo-decoder provides Log 

Likelihood Ratios (LLRs) on the coded bits, the interference can be estimated and subtracted to all blocks 

and antennas. The interference soft estimationis based on the Log A posteriori Probability Ratios (LAPPRs) 

Λap, which is the total output of the channel decoder (including channel observations). In the following, 

we adopt the latter approach, coined LAPPR-based turbo L-CWIC, since it provides (in general) better 

performance [BRI99] and is the most difficult to predict [WBS02]. 

5.3.2 PHY abstraction 

 The PHY abstraction framework relies on symbol-wise semi-analytical prediction performance. The 

proposed methods consider the user demapping and decoding as a joint process and tracks the evolution 

of the Average Mutual Information (AMI) defined at symbol level and circulating between the LMMSE-IC 

based interface and the bank of joint demappers and channel decoders. Figure 16 describes the two parts 

of the abstraction scheme for turbocoded transmission. The first part ends up with a nb. nt parallel channel 

at a given iteration. Each sub-channel is modelled as a discrete-input Additive White Gaussian Noise 

(AWGN) channel, i.e. s̃b,t,l = sb,t,l + εb,t,l with εb,t,l~𝒩ℂ(0,
1

γb,t
) where γb,t is the SINR value at b − th block and 

t − th antenna. The latter parallel channel AMI can be obtained by averaging the AMI with respect to γb,t 

of each sub-channel. x~𝒞𝒩(μ, σ2) means that x is a circularly-symmetric complex Gaussian RV with mean 

μ and variance σ2. Finally, the so-called effective SINR γeff (or MIESM) is the SNR that yields the same 

AWGN channel AMI as the one of the original parallel channel. The second part relies on prediction transfer 

functions describing the channel decoder. For a turbo-code, these functions are the LUTPER yielding the 

PER, the LUTν yielding the IER variance ν, and the LUTMI yielding the mutual information Iin on the 

systematic bits originating from the turbo-decoder last iteration. The 3 LUTs represents sampled functions 

simulated off-line on an AWGN channel that are bi-dimensional with respect to Iin and γeff (see [VBL10] 

for more details). For the next iteration, the effective SINR is updated with the new IER variance read out 

from the LUTν and the mutual information from the LUTMI and the process is repeated. Since we aim at 



predicting LAPPR-based turbo L-CWIC most of the PHY abstraction underlying assumptions are violated 

[VBL10]. As a result, we have to resort to some calibration methods to improve its accuracy in average.  

 

Figure 16:PHY abstraction for turbo L-CWIC at iterationi. 

 

5.4 PHY abstraction calibration 

  A 1D calibration over the IER factor read out from the LUTν was proposed in [NVB13]. The IER at iteration 

i = 1,⋯ , it is obtained as  

𝜈(𝑖) = LUT𝜈(𝛾𝑒𝑓𝑓
(𝑖)
(𝐜, 𝜈(𝑖−1)), 𝐼𝑖𝑛

(𝑖−1)
),    (5.43) 

 and the MI as 

𝐼𝑖𝑛
(𝑖)
= LUTMI (𝛾𝑒𝑓𝑓

(𝑖)
(𝐜, 𝜈(𝑖−1)), 𝐼𝑖𝑛

(𝑖−1)
),     (5.44) 

 

 where Iin
(0)

 and ν(0) takes the value of 0 and 1, respectively, for the first iteration. The initially proposed 1D 

calibration consists in replacing the IER variance ν(i) by ν(i) ← min(1, α0ν
(i)) where α0 ≥ 1 is sought in order 

to minimize the error between the predicted and simulated average PER in a given region [VBL10]. Here, 

we propose an improved calibration framework which minimizes the error between the predicted and 

simulated instantaneous PER, i.e., the PER with respect to a given CSIR outcome, at the targeted iteration 

number it. It is clearly the most rigorous approach to calibrate our PHY abstraction for FLA applications. 

Furthermore, we suggest a general calibration framework which also calibrates the MIESM compression 

at each iteration i = 1,⋯ , it. It can be expressed as follows, omitting the CSIR and IER dependency,  

𝛾𝑒𝑓𝑓
(𝑖)
(𝛼(𝑖)) = 𝛼2

(𝑖)
𝐼−1 (

1

𝑛𝑡.𝑛𝑏
∑𝑛𝑡𝑡=1 ∑

𝑛𝑏
𝑏=1 𝐼 (

𝛾𝑏,𝑡
(𝑖)
(𝛼0
(𝑖−1)

)

𝛼1
(𝑖) ))   (5.45) 

 where α(i) = [α0
(i−1)

, α1
(i)
, α2
(i)
]T, I(. ) is the mutual information for a given discrete input and γb,t

(i)
(α0

(i−1)
) is the 

SINR at iteration i related to block b and antenna t whose analytical formula with respect to the CSIR and 

ν(i−1) ← min(1, α0
(i−1)

ν(i−1)) is detailed in[NVB13]. Note that the 1D calibration framework is included when 

the following constraints α1
(i)
= α2

(i)
= 1, α0

(i)
= α0 for all i = 1,⋯ , it and α0

(0)
= 1 are applied. Next Section 

describes the Monte Carlo framework to obtain the calibration factors. 

5.4.1 Calibration methods 

  PHY abstractions are mainly used in practice for FLA. Indeed, as stated in the introduction, FLA is an 

essential feature of advanced mobile systems. As a result, our calibration procedure aims at minimizing 

the Mean Squared Error (MSE) between the simulated and predicted throughput at the targeted iteration 

number it. More precisely, the throughput prediction error in FLA scheme is  

휀1 = ∫ |𝑅p
(𝑖𝑡)
(𝐜) − 𝑅s

(𝑖𝑡)
(𝐜)|

2
𝑝(𝐜)𝑑𝐜     (5.46) 
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 where Rs
(it)
(c) and Rp

(it)
(c) are the predicted and simulated throughput, respectively, at iteration it and with 

respect to the CSIR c, p(c) is the PDF of the CSIR. We have p(c) = p(h)p(ρ) where p(h) and p(ρ) are the pdf 

of the channel coefficients and the average SNR. It yields for a given MCS of rate Rm 

휀2 = 휀1/𝑅𝑚
2 = ∫ |PEP𝑚

(𝑖𝑡)
(𝐜, 𝜶) − PER𝑚

(𝑖𝑡)
(𝐜))|

2
𝑝(𝐜)𝑑c   (5.47) 

 where PEP m
(it)
(c, α) and PER m

(it)
(c) are the predicted and simulated PER at iteration it for the given CSIR 

c and MCS mand α = [α(1)
T
, ⋯ , α(it)

T
]T . Finding the calibration factors that minimize the predicted throughput 

errors leads to the following optimization problem  

𝜶 = min
𝜶
 휀2(𝜶) = 𝔼c[|ΔPEP𝑚

(𝑖𝑡)
(𝐜, 𝜶)|2]     (5.48) 

where ΔPEPm
(it)
(c, α) = PEPm

(it)
(c, α) − PERm

(it)
(c). In the following, we omit the dependency of the PER, PEP and 

ΔPEP with respect to the iteration number it and MCS number m for the sake of notation simplicity. 

Calibration optimization procedure 

  Our Goal is to minimize the discrepancy between the simulated and predicted data rate. It comes down 

to minimizing the average MSE between the simulated and predicted instantaneous PER as explained in 

the previous Section. It is well known that the maximization of the throughput in FLA, i.e., maxmRm(1 −

PERm), have the MCS used in the PER region of [0.1,1]. In LTE, the feedback metrics are chosen for a target 

PER of 10%. It is also the region where PER prediction errors have the worst effect on the MSE given in 

(6). That is why we focus on that region in the following. Since the prediction method should work 

irrespective of the channel outcome, we perform our calibration on the worst channel and noise variance 

pdfs, the worst in terms of spread of the CSIR outcomes following the maximum entropy principle. 

Therefore, the random vector h pdf is chosen to follow a multidimensional circularly complex Gaussian 

distribution with covariance proportional to the identity matrix and the average SNR pdf is uniformly 

distributed between [ρmin, ρmax]. The SNR limits are chosen such that the probabilities that PER(h, ρmin) = 1 

and that PER(h, ρmax) < 10% is close to 1. In practice, we choose a sufficiently large SNR range, e.g., −30dB 

and +30dB. We define the subset Ω as the event that the simulated PER is between [0.1,1], which is the 

region of interest. Let us define the random variable X(c) = [c ∈ Ω], where the Iverson bracket [P] yields 1 

if the event P is true and 0 otherwise. Finally, our calibration method can be expressed as  

𝜶 = min
𝜶
𝔼c[𝑋(𝐜). |ΔPEP(𝜶, 𝐜)|

2] = min
𝜶
휀(𝜶).     (5.49) 

The cost function in this equation can be expanded into  

 

휀(𝜶) =
1

Δ𝜌
∫ 𝑝(𝐡)𝑑h ∫

𝜌max
𝜌min

𝑑𝜌𝑋(𝐜)|ΔPEP(𝜶, 𝐜)|
2
     (5.50) 

 

where Δρ = ρmin − ρmax. Using Monte Carlo and trapezoidal rule (with non uniform step) integration 

methods, it can be evaluated as  

휀(𝜶, 𝑁) =
1

𝑁Δ𝜌
∑𝑁𝑛=1 ∑

𝑀𝑛−1
𝑚=0

𝜂𝑛,𝑚

2
(𝛿𝑛,𝑚 + 𝛿𝑛,𝑚+1)    (5.51) 

where  

{
 
 

 
 𝛿𝑛,𝑚 = |ΔPEP(𝜶, 𝐡𝒏, 𝜌𝑛,𝑚)|

2

𝜌𝑛,𝑚+1 = 𝜌𝑛,𝑚10
Δ𝑛,𝑚
10

𝜂𝑛,𝑚 = 𝜌𝑛,𝑚(10
Δ𝑛,𝑚
10 − 1)

,     (5.52) 

 



and where hn is drawn following the distribution p(h), Mn + 1 is the number of SNR points starting at SNR 

ρn,0 and increasing by varying steps {Δn,m} in dB to reach ρn,Mn
 conditional on the given channel outcome 

hn, N is the total number of channel outcomes considered. The parameters Mn + 1, {Δn,m}, ρn,0,N should be 

wisely selected in order to accurately match the MSE ε. The starting SNR point ρn,0 is selected such that 

the PEP(hn, ρn,0) without calibration is equal to 1 while the PEP(hn, ρn,1) is between [0.95,1[. Indeed, we know 

from [NVB13] that PER≥PEP without calibration (the prediction is too optimistic), and thus ΔPEP= 0 when 

PEP= 1. The SNR steps {Δn,m} should be sufficiently small to capture the smoothness of the simulated PER 

curve. Finally, Mn + 1 (or the final SNR ρn,Mn
) is chosen to reach a simulated PER below 0.1. The number of 

channel N should satisfy the convergence criterion defined as  

휀(𝜶, 𝑁) = lim
𝑛→∞

휀(𝜶, 𝑛).      (5.53) 

5.5 Simulation results 

  We consider an STBICM transmitted over 4 × 4 quasi-static Rayleigh nb block fading, the number of 

channel blocks is either nb = 1 or nb = 8. The STBICM is built from a turbo code based on two 8-state 

recursive systematic convolutional encoders with generator matrix G = [1,1011/1101]2 and Gray labeling 

with QAM modulation. The evaluation is performed for MCS 6 whose rate is R = ntq1r1 = 8 bits per channel 

use (bpcu) where r1 = 1/2 is the punctured turbo code rate and q1 = 4 is related to a 16QAM modulation 

and for MCS 12 whose rate is R = ntq2r2 = 20 bpcu where r2 = 5/6 is the punctured turbo code rate and 

q2 = 6 is related to a 64QAM modulation. These MCSs are chosen since they are particularly difficult to 

predict due to their very high spectral efficiencies. Indeed, MCS 12 is all the more difficult since it combines 

both a high code rate and high modulation order, thus the calibration procedure is crucial. The total 

number of channel uses is fixed to L = 2040. The number of iterations is chosen in order to have the 

performance converged, i.e., it = 8, only one inner turbocode iteration is performed. In the following, we 

refer to MSE as the relative MSE Δρε(α) where Δρ ≈ 103.   

 

Table 2: 𝟖-block fading channel - 1D/3D calibration factors 

MSE  w/ocalib.   1D calib.   3D calib.  8D calib.  

MCS 6  0.35 0.01 0.0078 0.0058 

MCS 12  7.67 0.56 0.406 0.403 

 

Table 3: 𝟏-block fading channel - MSE 

 

 

 

 

In order to carry out the calibration and to estimate the MSE given in (5.54), we start by generating the 

trace files (TF) for MCS 6 and MCS 12. Each TF contains a set ℋ of channel realizations with their simulated 

PER in the interval [0.1,1]. We apply the PHY abstraction scheme on the saved channel outcomes and we 

compute the MSE between simulated and predicted instantaneous PER. Fig. 4 illustrates a batch of curves 

for MCS 6 and 12. The simulated PER are shown for more than 60 channel outcomes for each MCS. We 

witness that fixing Δn,m = 0.1dB∀n,m for all channel outcomes was sufficient with acceptable computational 

time complexity. It can be observed that the MCS 12 performance is more dispersed over the SNR interval 

than MCS6. This dispersion is due both to the high coding rate and the 64QAM modulation. 

MSE  w/ocalib.  1D calib.  3D calib.  8D calib.  

MCS 6  0.51 0.037 0.0209 0.017 

MCS 12  9.58 0.54 0.397 0.38 
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Figure 17: Batch of curves stocked in the Trace files in order to perform the calibration for MCS 6 and MCS12. 

Regarding the optimization problem introduced in (4.47) for calibration, it can be resolved using numerical 

algorithms such as the Polak-Ribiere conjugate gradient. The latter is implemented in C by the GNU 

Scientific (GSL) library [GOU09] which was used in the paper. In order to show that the number of channel 

outcomes N in the TFs is enough to satisfy the MSE convergence (4.51), we plot inFigure 18 the optimized 

MSE, i.e., with optimal calibration factors for each value of N, with respect to N. For MCS 6, the minimal 

MSE largely fluctuates when N is small, i.e. N < 20. The convergence is achieved with the increase of N, 

i.e. N > 20. For MCS 12, a higher number of random channel realizations is required and the convergence 

region starts for N > 60. 

After having checked the convergence, the calibration efficiency is evaluated based on the MSE, 

representative of the throughput prediction error.Table 2compares the non calibrated MSE to the 1D, 3D 

and 8D calibrated ones in 8-block fading channel.We mean by 3D calibration that α is constant over all 

iterations, and by 8D calibration that α is optimized for the first 3 iterations, i.e., the optimization is carried 

over α(1), α(2) and α(3) with the following constraints α(i) = α(3) ∀i > 3 and α0
(0)
= 1. It can be seen that the 

calibration introduces a significant MSE gain, and that the 3D calibration results in additional gain 

compared to the 1D approach. For MCS 12, the MSE decreases from 7.67 to 0.56 using the 1D calibration 

and then to 0.4 using the 3D calibration.The 8D calibration results in an additional gain for MCS 6, however, 

for MCS 12 this gain is not as noticeable. In 1-block fading channel, similar observations are made as 

shown in Table 3, i.e. , for MCS 6 the MSE decreases from 0.51 to 0.037 using the 1D calibration, then to 

0.0209 using the 3D calibration, and to 0.017 using the 8D calibration.Comparing the 1D calibration factors 

with respect to the 1-block and 8-block fading cases, we can conclude that for MCS 6 and MCS 12 the 

calibration factors are close, and that the optimal calibration factors for 8-block fading channel yield an 

MSE near to optimal when applied to the 1-block fading channel as shown inTable 4.Thus, rough calibration 

factors could be used (e.g., by taking the highest calibration factor value) in the 1D case which confirms 

our previous conclusions of low dependency of the proposed PHY abstraction with the frequency selectivity 

of the channel. 



 

Figure 18:The convergence of the 3D MSE calibration solution for MCS 𝟔 and MCS 𝟏𝟐. 

 

Figure 19: Comparison of the predicted and simulated PER for MCS 6 and MCS 12. 

Finally, we show the calibration effect with respect to the effective SINR at first iteration denoted γeff
(1)

 for 

simplicity. Figure 18 and Figure 19 illustrate the impact of the 3D calibration on the PEP for 8-block fading 

channel. In the non-calibrated scheme, for MCS 6 and γeff
(1)

 between 3 − 4.5 dB and for MCS 12 and γeff
(1)

 

between 10 − 15 dB, many predicted PER are in the interval ]0,0.1] whereas the simulated PER are at 1. 

After 3D calibration, all those aforementioned points are corrected and brought back to their simulated 

value. This explains the significant decrease in the MSE in Table 4. 

Table 4: 1-block fading MSE w.r.t. the calibration coefficients optimized for 8-block fading channel 

MSE 1D calib. 3D calib. 8D calib. 

MCS 6 0.046 0.023 0.020 

MCS 12 0.58 0.56 0.56 

 

The future work is to integrate the HARQ-Type II Chase Combining scheme in the turbo-CWIC, and to 

evaluate the throughput in FLA context under low, medium and high correlated channel.  
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6 CONCLUSIONS 

This deliverable presents novel approaches for interference management in realistic networks. The 

different stages leading to a comprehensive interference management solution are studied, from the 

design of a model for the wireless network and the interference created, to the abstraction of the 

performance. It is shown that by properly taking into account the practical constraints, it is possible to 

design new robust methods with a strong potential for reducing significantly the interference floor in future 

networks. The methods presented are highly innovative and are based on new ideas. Preliminary 

simulation results are presented to show the potential of the approach and help in understanding its main 

principle. However, how to make these methods more efficient in practice and more advanced 

performance evaluation will be carried out in the future in order to evaluate more precisely the possible 

gains.  
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